zoukankan      html  css  js  c++  java
  • leetcode 762. Prime Number of Set Bits in Binary Representation

    Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime number of set bits in their binary representation.

    (Recall that the number of set bits an integer has is the number of 1s present when written in binary. For example, 21 written in binary is 10101 which has 3 set bits. Also, 1 is not a prime.)

    Example 1:

    Input: L = 6, R = 10
    Output: 4
    Explanation:
    6 -> 110 (2 set bits, 2 is prime)
    7 -> 111 (3 set bits, 3 is prime)
    9 -> 1001 (2 set bits , 2 is prime)
    10->1010 (2 set bits , 2 is prime)
    

    Example 2:

    Input: L = 10, R = 15
    Output: 5
    Explanation:
    10 -> 1010 (2 set bits, 2 is prime)
    11 -> 1011 (3 set bits, 3 is prime)
    12 -> 1100 (2 set bits, 2 is prime)
    13 -> 1101 (3 set bits, 3 is prime)
    14 -> 1110 (3 set bits, 3 is prime)
    15 -> 1111 (4 set bits, 4 is not prime)
    

    Note:

    1. L, R will be integers L <= R in the range [1, 10^6].
    2. R - L will be at most 10000.

    解法1:

    直接暴力

    class Solution(object):
        def countPrimeSetBits(self, L, R):
            """
            :type L: int
            :type R: int
            :rtype: int
            """
            # for echo num:
            #    count bits in num and judge if it is prime        
            prime_nums = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
            
            def count_1bits(n):
                ans = 0
                while n:
                    ans += 1
                    n = n & (n-1)
                return ans
            
            ans = 0
            for n in range(L, R+1):
                bits = count_1bits(n)
                if bits in prime_nums:
                    ans += 1
            return ans

    解法2:使用dp,比较巧妙!因为 数字num中1的个数=num/2中1的个数+num末尾数字是否为1

    虽然会说超时,但还是值得掌握的。

    class Solution(object):
        def countPrimeSetBits(self, L, R):
            """
            :type L: int
            :type R: int
            :rtype: int
            """      
            prime_nums = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
            
            def count_bits(n):
                bits = [0]*(n+1)
                for i in range(1, n+1):
                    bits[i] = bits[i>>1] + (i&1)
                return bits
    
            ans = 0
            bits = count_bits(R)
            for n in range(L, R+1):
                if bits[n] in prime_nums:
                    ans += 1                
            return ans
  • 相关阅读:
    HDU 2141.Can you find it?-二分
    POJ 3258.River Hopscotch-二分
    HDU 1213.How Many Tables-并查集
    HDU 1232.畅通工程-并查集
    hdu 5701 中位数计数 思路题
    codeforces 354 div2 C Vasya and String 前缀和
    codeforces 11 B.Jumping Jack 想法题
    hdu 2204 Eddy's爱好 容斥原理
    xtu 1242 Yada Number 容斥原理
    codeforces 300 div2 B.Pasha and Phone 容斥原理
  • 原文地址:https://www.cnblogs.com/bonelee/p/8546831.html
Copyright © 2011-2022 走看看