zoukankan      html  css  js  c++  java
  • leetcode 762. Prime Number of Set Bits in Binary Representation

    Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime number of set bits in their binary representation.

    (Recall that the number of set bits an integer has is the number of 1s present when written in binary. For example, 21 written in binary is 10101 which has 3 set bits. Also, 1 is not a prime.)

    Example 1:

    Input: L = 6, R = 10
    Output: 4
    Explanation:
    6 -> 110 (2 set bits, 2 is prime)
    7 -> 111 (3 set bits, 3 is prime)
    9 -> 1001 (2 set bits , 2 is prime)
    10->1010 (2 set bits , 2 is prime)
    

    Example 2:

    Input: L = 10, R = 15
    Output: 5
    Explanation:
    10 -> 1010 (2 set bits, 2 is prime)
    11 -> 1011 (3 set bits, 3 is prime)
    12 -> 1100 (2 set bits, 2 is prime)
    13 -> 1101 (3 set bits, 3 is prime)
    14 -> 1110 (3 set bits, 3 is prime)
    15 -> 1111 (4 set bits, 4 is not prime)
    

    Note:

    1. L, R will be integers L <= R in the range [1, 10^6].
    2. R - L will be at most 10000.

    解法1:

    直接暴力

    class Solution(object):
        def countPrimeSetBits(self, L, R):
            """
            :type L: int
            :type R: int
            :rtype: int
            """
            # for echo num:
            #    count bits in num and judge if it is prime        
            prime_nums = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
            
            def count_1bits(n):
                ans = 0
                while n:
                    ans += 1
                    n = n & (n-1)
                return ans
            
            ans = 0
            for n in range(L, R+1):
                bits = count_1bits(n)
                if bits in prime_nums:
                    ans += 1
            return ans

    解法2:使用dp,比较巧妙!因为 数字num中1的个数=num/2中1的个数+num末尾数字是否为1

    虽然会说超时,但还是值得掌握的。

    class Solution(object):
        def countPrimeSetBits(self, L, R):
            """
            :type L: int
            :type R: int
            :rtype: int
            """      
            prime_nums = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}
            
            def count_bits(n):
                bits = [0]*(n+1)
                for i in range(1, n+1):
                    bits[i] = bits[i>>1] + (i&1)
                return bits
    
            ans = 0
            bits = count_bits(R)
            for n in range(L, R+1):
                if bits[n] in prime_nums:
                    ans += 1                
            return ans
  • 相关阅读:
    django学习之命令
    832. 翻转图像
    JUC线程池深入刨析
    CountDownLatch、CyclicBarrier、Samephore浅谈三大机制
    深入理解Atomic原子类
    浅谈volatile关键字
    web应用启动的时候SpringMVC容器加载过程
    MySQL锁机制
    TCP拥塞控制
    HTTPS的加密流程(通俗易懂,不可错过)
  • 原文地址:https://www.cnblogs.com/bonelee/p/8546831.html
Copyright © 2011-2022 走看看