zoukankan      html  css  js  c++  java
  • tensorflow实现svm多分类 iris 3分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)

    # Multi-class (Nonlinear) SVM Example
    #
    # This function wll illustrate how to
    # implement the gaussian kernel with
    # multiple classes on the iris dataset.
    #
    # Gaussian Kernel:
    # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2)
    #
    # X : (Sepal Length, Petal Width)
    # Y: (I. setosa, I. virginica, I. versicolor) (3 classes)
    #
    # Basic idea: introduce an extra dimension to do
    # one vs all classification.
    #
    # The prediction of a point will be the category with
    # the largest margin or distance to boundary.
    
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    from sklearn import datasets
    from tensorflow.python.framework import ops
    ops.reset_default_graph()
    
    # Create graph
    sess = tf.Session()
    
    # Load the data
    # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
    iris = datasets.load_iris()
    x_vals = np.array([[x[0], x[3]] for x in iris.data])
    y_vals1 = np.array([1 if y == 0 else -1 for y in iris.target])
    y_vals2 = np.array([1 if y == 1 else -1 for y in iris.target])
    y_vals3 = np.array([1 if y == 2 else -1 for y in iris.target])
    y_vals = np.array([y_vals1, y_vals2, y_vals3])
    class1_x = [x[0] for i, x in enumerate(x_vals) if iris.target[i] == 0]
    class1_y = [x[1] for i, x in enumerate(x_vals) if iris.target[i] == 0]
    class2_x = [x[0] for i, x in enumerate(x_vals) if iris.target[i] == 1]
    class2_y = [x[1] for i, x in enumerate(x_vals) if iris.target[i] == 1]
    class3_x = [x[0] for i, x in enumerate(x_vals) if iris.target[i] == 2]
    class3_y = [x[1] for i, x in enumerate(x_vals) if iris.target[i] == 2]
    
    # Declare batch size
    batch_size = 50
    
    # Initialize placeholders
    x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
    y_target = tf.placeholder(shape=[3, None], dtype=tf.float32)
    prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32)
    
    # Create variables for svm
    b = tf.Variable(tf.random_normal(shape=[3, batch_size]))
    
    # Gaussian (RBF) kernel
    gamma = tf.constant(-10.0)
    dist = tf.reduce_sum(tf.square(x_data), 1)
    dist = tf.reshape(dist, [-1, 1])
    sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
    my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))
    
    
    # Declare function to do reshape/batch multiplication
    def reshape_matmul(mat, _size):
        v1 = tf.expand_dims(mat, 1)
        v2 = tf.reshape(v1, [3, _size, 1])
        return tf.matmul(v2, v1)
    
    # Compute SVM Model
    first_term = tf.reduce_sum(b)
    b_vec_cross = tf.matmul(tf.transpose(b), b)
    y_target_cross = reshape_matmul(y_target, batch_size)
    
    second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)), [1, 2])
    loss = tf.reduce_sum(tf.negative(tf.subtract(first_term, second_term)))
    
    # Gaussian (RBF) prediction kernel
    rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
    rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
    pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
    pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))
    
    prediction_output = tf.matmul(tf.multiply(y_target, b), pred_kernel)
    prediction = tf.argmax(prediction_output - tf.expand_dims(tf.reduce_mean(prediction_output, 1), 1), 0)
    accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, tf.argmax(y_target, 0)), tf.float32))
    
    # Declare optimizer
    my_opt = tf.train.GradientDescentOptimizer(0.01)
    train_step = my_opt.minimize(loss)
    
    # Initialize variables
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # Training loop
    loss_vec = []
    batch_accuracy = []
    for i in range(100):
        rand_index = np.random.choice(len(x_vals), size=batch_size)
        rand_x = x_vals[rand_index]
        rand_y = y_vals[:, rand_index]
        sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
        
        temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
        loss_vec.append(temp_loss)
        
        acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
                                                 y_target: rand_y,
                                                 prediction_grid: rand_x})
        batch_accuracy.append(acc_temp)
        
        if (i + 1) % 25 == 0:
            print('Step #' + str(i+1))
            print('Loss = ' + str(temp_loss))
    
    # Create a mesh to plot points in
    x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
    y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                         np.arange(y_min, y_max, 0.02))
    grid_points = np.c_[xx.ravel(), yy.ravel()]
    grid_predictions = sess.run(prediction, feed_dict={x_data: rand_x,
                                                       y_target: rand_y,
                                                       prediction_grid: grid_points})
    grid_predictions = grid_predictions.reshape(xx.shape)
    
    # Plot points and grid
    plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
    plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
    plt.plot(class2_x, class2_y, 'kx', label='I. versicolor')
    plt.plot(class3_x, class3_y, 'gv', label='I. virginica')
    plt.title('Gaussian SVM Results on Iris Data')
    plt.xlabel('Pedal Length')
    plt.ylabel('Sepal Width')
    plt.legend(loc='lower right')
    plt.ylim([-0.5, 3.0])
    plt.xlim([3.5, 8.5])
    plt.show()
    
    # Plot batch accuracy
    plt.plot(batch_accuracy, 'k-', label='Accuracy')
    plt.title('Batch Accuracy')
    plt.xlabel('Generation')
    plt.ylabel('Accuracy')
    plt.legend(loc='lower right')
    plt.show()
    
    # Plot loss over time
    plt.plot(loss_vec, 'k-')
    plt.title('Loss per Generation')
    plt.xlabel('Generation')
    plt.ylabel('Loss')
    plt.show()
    
    # Evaluations on new/unseen data
    

     

  • 相关阅读:
    mysqldump --skip-tz-utc
    mysql 时间格式转换 DATE_FORMAT
    redis setinel 启动就 sdown
    virtualbox 1059m 布置1G虚拟机
    virtualbox 扩展磁盘空间
    tar gzip 压缩效率比较
    堆表 索引组织表
    内核参数 kernel.shmmax
    utf8mb4 字符集能正常存储表情
    源码包中带 boost 和 不带 boost
  • 原文地址:https://www.cnblogs.com/bonelee/p/8996655.html
Copyright © 2011-2022 走看看