zoukankan      html  css  js  c++  java
  • pyculiarity 时间序列(异常流量)异常检测初探——感觉还可以,和Facebook的fbprophet本质上一样

    demo:

    from pyculiarity import detect_ts
    import matplotlib.pyplot as plt
    import pandas as pd
    import matplotlib
    matplotlib.style.use('ggplot')
    
    __author__ = 'willmcginnis'
    
    if __name__ == '__main__':
        # first run the models
        twitter_example_data = pd.read_csv('./raw_data.csv', usecols=['timestamp', 'count'])
        results = detect_ts(twitter_example_data, max_anoms=0.05, alpha=0.001, direction='both', only_last=None)
    
        # format the twitter data nicely
        twitter_example_data['timestamp'] = pd.to_datetime(twitter_example_data['timestamp'])
        twitter_example_data.set_index('timestamp', drop=True)
    
        # make a nice plot
        f, ax = plt.subplots(2, 1, sharex=True)
        ax[0].plot(twitter_example_data['timestamp'], twitter_example_data['value'], 'b')
        ax[0].plot(results['anoms'].index, results['anoms']['anoms'], 'ro')
        ax[0].set_title('Detected Anomalies')
        ax[1].set_xlabel('Time Stamp')
        ax[0].set_ylabel('Count')
        ax[1].plot(results['anoms'].index, results['anoms']['anoms'], 'b')
        ax[1].set_ylabel('Anomaly Magnitude')
        plt.show()
    

     

    demo2代码如下:

    from matplotlib import pyplot as plt
    from pyculiarity import detect_ts
    import pandas as pd
    import numpy as np
    
    twitter_example_data = pd.read_csv('raw_data.csv',
                                        usecols=['timestamp', 'count'])
    
    
    plt.plot(range(0, len(twitter_example_data)), twitter_example_data['count'],  "k.", label='points')
    results = detect_ts(twitter_example_data,
                        max_anoms=0.02,
                        direction='both')
    print(results['anoms'][0:10])
    print(results['anoms'][-10:])
    print(len(results['anoms']))
    
    for timestamp, anomal_val in zip(results['anoms']['timestamp'], results['anoms']['anoms']):
        print(timestamp, anomal_val)
        index_list = np.where(twitter_example_data["timestamp"] == timestamp)
        assert len(index_list) == 1
        plt.plot([index_list[0]], anomal_val, "rX", label='abnormal points')
    plt.show()
    

     效果图:

    原始数据图:

    红色为检测出来的异常点:

  • 相关阅读:
    python学习---字符编码
    python学习--变量
    python学习--pycharm编辑器及优化设置
    python学习--第一个python程序helloworld
    python安装
    python学习---python2与python3的区别
    win7下weblogic安装与部署项目调试记录
    ubuntu获得root用户权限,使用xshell连接!
    linux命令
    nginx + tomcat 集群记录
  • 原文地址:https://www.cnblogs.com/bonelee/p/9885739.html
Copyright © 2011-2022 走看看