zoukankan      html  css  js  c++  java
  • PAT 1085 Perfect Sequence

    PAT 1085 Perfect Sequence

    题目:

    Given a sequence of positive integers and another positive integer p. The sequence is said to be a "perfect sequence" if M <= m * p where M and m are the maximum and minimum numbers in the sequence, respectively.

    Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (<= 105) is the number of integers in the sequence, and p (<= 109) is the parameter. In the second line there are N positive integers, each is no greater than 109.

    Output Specification:

    For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.

    Sample Input:
    10 8
    2 3 20 4 5 1 6 7 8 9
    
    Sample Output:
    8
    

    地址:http://pat.zju.edu.cn/contests/pat-a-practise/1085

        注意题意,说的是从数组中取任意多个数字满足完美子序列,所以对数字的要求没有顺序性。我的方法是,先对数组做一个排序,时间为O(nlogn),然后在用线性的时间找到这个序列,如果该题用O(n^2)的算法则会有一个case超时。现在来说说如何在线性时间找到这个序列:首先,用下标i表示当前找到的最大值,用下标j表示当前找到的最小值。从j=0开始,i可以从0一直遍历到第一不满足data[0]*p >= data[i],此时,说明序列0到i-1是满足完美子序列,也就是以data[0]为最小值的最大完美子序列,我们把其个数记为count;然后j加一,此时最小值变为data[1],这是data[1]*p >= data[0]*p>=data[i],也就是说原来的count个也都满足,但由于data[0]比data[1]要小,所以不满足data[1]为最小值,故count减一,然后在从当前的i开始往后继续找,找到第一个不满足data[1]*p>=data[i],此时的count为以data[1]为最小值的最大完美子序列的个数,然后j继续加一,count减一,i继续向前遍历,如此循环直到j走到底。由于i,j在遍历时都没有回头,故时间复杂度为线性的。代码:

     1 #include <stdio.h>
     2 #include <algorithm>
     3 using namespace std;
     4 
     5 int main()
     6 {
     7     long long n,p;
     8     long long data[100000];
     9     while(scanf("%lld%lld",&n,&p) != EOF){
    10         for(int i = 0; i < n; ++i){
    11             scanf("%lld",&data[i]);
    12         }
    13         sort(data,data+n);
    14         int result = 0;
    15         int count = 0;
    16         int i = 0, j = 0;
    17         long long sum;
    18         while(i < n){
    19             sum = data[j] * p;
    20             while(i < n && data[i] <= sum){
    21                 ++count;
    22                 ++i;
    23             }
    24             if(count > result)
    25               result = count;
    26             ++j;
    27             --count;
    28             
    29         }
    30         printf("%d
    ",result);
    31     }
    32     return 0;
    33 }
  • 相关阅读:
    Google Kubernetes设计文档之服务篇-转
    基于kubernetes构建Docker集群管理详解-转
    Pass云Docker介绍
    Spring <context:annotation-config/> 解说
    webapp开发需要注意的浏览器内核知识
    koala编译scss文件时不支持中文字体的解决方案
    CSS3硬件加速需要注意的事项
    ios客户端快速滚动和回弹效果的实现
    mui禁止滚动条和禁止滚动
    苹果端禁用左右滑动屏幕返回上级页面
  • 原文地址:https://www.cnblogs.com/boostable/p/pat_1085.html
Copyright © 2011-2022 走看看