zoukankan      html  css  js  c++  java
  • 容器监控告警方案(cAdvisor + nodeExporter + alertmanager + prometheus +grafana)

    一、prometheus基本架构

    Prometheus 是一套开源的系统监控报警框架。它启发于 Google 的 borgmon 监控系统,由工作在 SoundCloud 的 google 前员工在 2012 年创建,作为社区开源项目进行开发,并于 2015 年正式发布。2016 年,Prometheus 正式加入 Cloud Native Computing Foundation,成为受欢迎度仅次于 Kubernetes 的项目。作为新一代的监控框架,Prometheus 具有以下特点:

    • 多维数据模型(时序列数据由metric名和一组key/value组成)
    • 在多维度上灵活的查询语言(PromQl)
    • 不依赖分布式存储,单主节点工作.
    • 通过基于HTTP的pull方式采集时序数据
    • 可以通过push gateway进行时序列数据推送(pushing)
    • 可以通过服务发现或者静态配置去获取要采集的目标服务器
    • 多种可视化图表及仪表盘支持

     

    • Prometheus server 主要负责数据采集和存储,定期从静态配置的 targets 或者服务发现(主要是DNS、consul、k8s、mesos等)的 targets 拉取数据,提供PromQL查询语言的支持
    • 客户端sdk 官方提供的客户端类库有go、java、scala、python、ruby,其他还有很多第三方开发的类库,支持nodejs、php、erlang等
    • Push Gateway 支持临时性Job主动推送指标的中间网关
    • exporters 支持其他数据源的指标导入到Prometheus,支持数据库、硬件、消息中间件、存储系统、http服务器、jmx等

    • alertmanager 实验性组件、用来进行报警

    • 主要通过grafana来实现webui展示

    二、手动实验

    环境准备:172.16.101.250、172.16.101.251 都已安装了docker和docker-compose服务,需要机器连网,要不然docker镜像不能自动下载。

    部署规划:

    机器 部署服务
    172.16.101.250

    prometheus

    cAdvisor

    Node Exporter

    grafana

    172.16.101.251

    cAdvisor

    Node Exporter

     

     

     

     

     

    1、在2台机器上部署Node Exporter和cAdvisor

    • Node Exporter,负责收集 host 硬件和操作系统数据。它将以容器方式运行在所有 host 上。

    • cAdvisor,负责收集容器数据。它将以容器方式运行在所有 host 上。

       1)新建  /opt/container-monitor/nodeexporter-cadvisor/docker-compose.yml

    version: '2.1'
    services:
      node-exporter:
        image: prom/node-exporter
        container_name: prometheus_node-exporter
        restart: always
        logging:
          driver: "json-file"
          options:
            max-size: "10m"
            max-file: "5"
        ports:
          - 9100:9100
        volumes:
          - /proc:/host/proc:ro
          - /sys:/host/sys:ro
          - /:/rootfs:ro
        command:
          - '--path.procfs=/host/proc'
          - '--path.sysfs=/host/sys'
          - '--collector.filesystem.ignored-mount-points=^/(sys|proc|dev|host|etc|rootfs/var/lib/docker/containers|rootfs/var/lib/docker/overlay2|rootfs/run/docker/netns|rootfs/var/lib/docker/devicemapper|rootfs/var/lib/docker/aufs)($$|/)'
      cadvisor:
        image: google/cadvisor
        container_name: prometheus_cadvisor
        restart: always
        logging:
          driver: "json-file"
          options:
            max-size: "10m"
            max-file: "5"
        ports:
          - 9101:8080
        volumes:
          - /:/rootfs:ro
          - /var/run:/var/run:rw
          - /sys:/sys:ro
          - /var/lib/docker/:/var/lib/docker:ro

       2) 运行容器

    cd /opt/container-monitor/nodeexporter-cadvisor
    docker-compose up -d

    浏览器输入:http://172.16.101.250:9100/metrics  可以看到node exporter采集的host的数据

     浏览器输入:http://172.16.101.250:9101/metrics  可以看到cAdvisor采集的container的数据

    2、只在172.16.101.250机器上部署alertmanager

     Alertmanager处理由类似Prometheus服务器等客户端发来的警报,之后需要删除重复、分组,并将它们通过路由发送到正确的接收器,比如电子邮件、Slack等。Alertmanager还支持沉默和警报抑制的机制。

      1)新建  /opt/container-monitor/alertmanager/config.yml 

    # 全局配置项
     global: 
       resolve_timeout: 5m  #处理超时时间,默认为5min
       smtp_smarthost: 'smtp.163.com:25'  # 邮箱smtp服务器代理
       smtp_from: 'xxx@163.com'  # 发送邮箱名称
       smtp_auth_username: 'xxx@163.com'  # 邮箱名称
       smtp_auth_password: 'xxx'  #邮箱密码
    
    # 定义模板信心
     templates:
       - '/etc/alertmanager/templates/*.html'
    
    # 定义路由树信息
     route:
       group_by: ['alertname'] # 报警分组依据
       group_wait: 10s # 最初即第一次等待多久时间发送一组警报的通知
       group_interval: 10s # 在发送新警报前的等待时间
       repeat_interval: 1m # 发送重复警报的周期 对于email配置中,此项不可以设置过低,否则将会由于邮件发送太多频繁,被smtp服务器拒绝
       receiver: 'email' # 发送警报的接收者的名称,以下receivers name的名称
    
    # 定义警报接收者信息
     receivers:
       - name: 'email' # 警报
         email_configs: # 邮箱配置
         - to: 'xxxx@qq.com'  # 接收警报的email配置
           html: '{{ template "test.html" . }}' # 设定邮箱的内容模板
           headers: { Subject: "[WARN] 报警邮件"} # 接收邮件的标题
         webhook_configs: # webhook配置
         - url: 'http://127.0.0.1:5001'

       2)新建  /opt/container-monitor/alertmanager/docker-compose.yml 

    version: '2.1'
    services:
      alertmanager:
        image: prom/alertmanager
        container_name: alertmanager
        restart: always
        network_mode: "host"
        ports:
          - 9093:9093
        logging:
          driver: "json-file"
          options:
            max-size: "10m"
            max-file: "5"
        volumes:
          - ./config.yml:/etc/alertmanager/config.yml
          - ./test.html:/etc/alertmanager/templates/test.html
        command:
          - '--config.file=/etc/alertmanager/config.yml'
          - '--storage.path=/alertmanager'
          - '--log.level=debug'

       3)新建  /opt/container-monitor/alertmanager/test.html

    {{ define "test.html" }}
    <table border="1">
            <tr>
                    <td>报警项</td>
                    <td>实例</td>
                    <td>报警内容</td>
                    <td>开始时间</td>
            </tr>
            {{ range $i, $alert := .Alerts }}
                    <tr>
                            <td>{{ index $alert.Labels "alertname" }}</td>
                            <td>{{ index $alert.Labels "instance" }}</td>
                            <td>{{ index $alert.Annotations "description" }}</td>
                            <td>{{ $alert.StartsAt }}</td>
                    </tr>
            {{ end }}
    </table>
    {{ end }}

    test.html是用来展示,告警消息的界面,展示在接收的邮箱上。

      4)运行alertmanager容器

    cd /opt/container-monitor/alertmanager
    docker-compose up -d

    3、只在172.16.101.250机器上部署prometheus

      1)新建  /opt/container-monitor/prometheus/running-rule.yml  ,该配置文件是prometheus中触发告警的配置文件

    groups:
    - name: test-rule
      rules:
      - alert: "服务运行"
        expr: container_tasks_state{name="mysql",state="running"} == 0
        for: 1m
        labels:
          severity: warning
        annotations:
          summary: "服务名:{{$labels.alertname}}"
          description: "容器: {{ $labels.name }} 处于运行中"

      2)新建  /opt/container-monitor/prometheus/prometheus.yml,prometheus的主配置文件

    # my global config
    global:
      scrape_interval:     15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
      evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
      external_labels:
          monitor: 'codelab-monitor'
    # Alertmanager configuration
    alerting:
      alertmanagers:
      - static_configs:
        - targets:
           - 172.16.101.250:9093
    
    # Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
    rule_files:
       - running-rule.yml
    
    # A scrape configuration containing exactly one endpoint to scrape:
    # Here it's Prometheus itself.
    scrape_configs:
      # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
      - job_name: 'prometheus'
    
        # metrics_path defaults to '/metrics'
        # scheme defaults to 'http'.
    
        static_configs:
        - targets: ['172.16.101.250:9090','172.16.101.250:9100','172.16.101.250:9101','172.16.101.251:9100','172.16.101.251:9101']

    上面红色的部分:指定从哪些 exporter 抓取数据。这里指定了两台 host 上的 Node Exporter 和 cAdvisor。开头的  172.16.101.251:9090 表示会收集自己的监控数据

    更多的配置可以看:  https://prometheus.io/docs/prometheus/latest/configuration/configuration/

     

    3)新建  /opt/container-monitor/prometheus/docker-compose.yml

    version: '2.1'
    services:
      prometheus:
        image: prom/prometheus
        container_name: prometheus
        restart: always
        network_mode: "host"
        logging:
          driver: "json-file"
          options:
            max-size: "10m"
            max-file: "5"
        volumes:
          - ./running-rule.yml:/etc/prometheus/running-rule.yml:z
          - ./prometheus.yml:/etc/prometheus/prometheus.yml:z

    4)运行prometheus容器

    cd /opt/container-monitor/prometheus
    docker-compose up -d

    浏览输入: http://172.16.101.250:9090,可以看到promethues的数据

      打开"Alerts",告警触发前:

       打开"Alerts",告警触发后:

       

         查看接收告警消息的qq邮箱:

        

    4、只在172.16.101.250机器上部署grafana

    Grafana是一个开源的度量分析与可视化套件。经常被用作基础设施的时间序列数据和应用程序分析的可视化,它在其他领域也被广泛的使用包括工业传感器、家庭自动化、天气和过程控制等。

    Grafana支持许多不同的数据源。每个数据源都有一个特定的查询编辑器,该编辑器定制的特性和功能是公开的特定数据来源。

    官方支持以下数据源:Graphite,InfluxDB,OpenTSDB,Prometheus,Elasticsearch,CloudWatch和KairosDB。

    每个数据源的查询语言和能力都是不同的。你可以把来自多个数据源的数据组合到一个仪表板,但每一个面板被绑定到一个特定的数据源,它就属于一个特定的组织。
     

     1)新建  /opt/container-monitor/grafana/docker-compose.yml

    version: '2.1'
    services:
      grafana:
        image: grafana/grafana
        container_name: grafana
        restart: always
        logging:
          driver: "json-file"
          options:
            max-size: "10m"
            max-file: "5"
        ports:
          - 3000:3000
        environment:
          - GF_SERVER_ROOT_URL=http://grafana.server.name
          - GF_SECURITY_ADMIN_PASSWORD=123456

    其中:GF_SECURITY_ADMIN_PASSWORD=secret 指定了admin用户的密码为123456

     2)运行grafana容器

    cd /opt/container-monitor/grafana
    docker-compose up -d

    浏览输入: http://172.16.101.250:3000,可以看到grafana登录界面,输入admin/123456

      3) 在grafana中添加prometheus数据源

     

     ( 注意:经过多次测试发现,name如果写成其他的好像不行,必须写Prometheus才能显示,不知道是不是一个BUG)

        4) 定制用于显示prometheus监控数据的dashboard,Grafana 是通过 Dashboard 展示数据的,在 Dashboard 中需要定义:

    1. 展示 Prometheus 的哪些多维数据?需要给出具体的查询语言表达式。

    2. 用什么形式展示,比如二维线性图,仪表图,各种坐标的含义等。

        可以从:https://grafana.com/dashboards?dataSource=prometheus&search=docker     下载官网定制好的一些dashboard

    点击:Download JSON 可以下载到一个   docker-prometheus-monitoring_rev7.json 文件。下面将该json导入dashboard

    最终效果如下图所示,分为Host Info 和Container Performance

  • 相关阅读:
    mybatis-plus中使用FIND_IN_SET函数
    配置devtools热部署
    clickhouse20.12.3参数配置
    mysql5.7的sys系统库应用示例
    单独的线程上创建和显示WPF窗口
    DataGrid 中Combox的使用
    DataGridColumn普通样式和编辑样式
    WPF分辨率适配
    C# 上传文件添加其他参数
    C# 上传文件添加附加参数
  • 原文地址:https://www.cnblogs.com/boshen-hzb/p/10040503.html
Copyright © 2011-2022 走看看