zoukankan      html  css  js  c++  java
  • 题解 DTOJ #4123.「2019冬令营提高组」全连

    欢迎访问 My Luogu Space


    【题目大意】

    有一段序列,每个点有两个值 (a[i])(t[i])

    若选择第 (i) 个点将会获得 (a[i]*t[i]) 的贡献,但就不能选择 ((a[i]-t[i],a[i]+t[i])) 范围内的其他点。

    询问能够获得的最大贡献。


    【题解】

    线段树优化dp

    很容易想到离线, (dp)
    (dp[i] = max(dp[j]+a[i]*t[i]),) ( (j+t[j]≤i) && (i-t[i]≥j))

    但这样时间效率很不优秀,因此考虑优化这个 (dp)

    我们发现对于当前的 (i) 枚举 (j) 的时候总是从 (1) 开始枚举,取 (dp[j], j∈[1, i-t[i]])的最大值。

    于是想到可以数据结构区间查询最大值,单点修改。

    但是并不是区间内所有的点都可以取到,还必须满足 (j+t[j]≤i)

    我们又发现这个等式的左侧只跟 (j) 有关,而我们的 (i) 是顺序枚举的,也就是说如果当前的 (i) 能够取到某一个 (j),那么之后的 (i) 也都能取到这个 (j)

    因此只需要因此只需要将一个新计算好的 (dp[j])(i=j+t[j]) 的时候放入数据结构中就好了。

    每个询问先进行上述操作,再查询区间 ([1, i-t[i]]) 内的最大值并记录答案。


    【代码】

    // output format !!
    // long long !!
    #include <bits/stdc++.h>
    #define ls (x<<1)
    #define rs (x<<1|1)
    using std::max;
    typedef long long LL;
    const int MAXN = 1000000+10;
    struct DATA{int loc; LL dat;};
    
    int n, t[MAXN], a[MAXN];
    LL tre[MAXN*4], ans;
    std::vector<DATA> tmp[MAXN];
    
    int rd(){
    	char c;while(!isdigit(c=getchar()));
    	int x=c-'0';while(isdigit(c=getchar())) x=x*10+c-'0';
    	return x;
    }
    void modify(int x, int l, int r, int p, LL v){
    	if(l == r) return tre[x] = v, void();
    	int mid = (l+r)>>1;
    	if(p <= mid) modify(ls, l, mid, p, v);
    	else modify(rs, mid+1, r, p, v);
    	tre[x] = max(tre[ls], tre[rs]);
    }
    LL query(int x, int l, int r, int ql, int qr){
    	if(ql<=l && r<=qr) return tre[x];
    	int mid = (l+r)>>1; LL res = 0;
    	if(ql <= mid) res = max(res, query(ls, l, mid, ql, qr));
    	if(qr > mid) res = max(res, query(rs, mid+1, r, ql, qr));
    	return res;
    }
    int main(){
    //	freopen("fc.in", "r", stdin);
    //	freopen("fc.out", "w", stdout);
    	scanf("%d", &n);
    	for(int i=1; i<=n; ++i) t[i] = rd();
    	for(int i=1; i<=n; ++i) a[i] = rd();
    	for(int i=1; i<=n; ++i){
    		for(auto j=tmp[i].begin(); j!=tmp[i].end(); ++j) 
    			modify(1, 1, n, (*j).loc, (*j).dat);
    		LL dp = (i-t[i]>0?query(1, 1, n, 1, i-t[i]):0)+1ll*a[i]*t[i];
    		if(i+t[i] <= n) tmp[i+t[i]].push_back((DATA){i, dp});
    		if(dp > ans) ans = dp;
    	}
    	printf("%lld", ans);
    	return 0;
    }
    

    记得函数参数内的 long long !! 因为这个爆零了......

  • 相关阅读:
    2017.5.8下午
    2017.5.8上午
    2017.5.5下午
    2017.5.5上午
    2017.5.4下午
    WPF DataGrid LoadingRow style 滚动失效
    centos nginx 环境变量
    Kettle-03-定时转换
    Kettle-02-转换
    Kettle-01-安装(CentOS 7 离线)
  • 原文地址:https://www.cnblogs.com/bosswnx/p/10988181.html
Copyright © 2011-2022 走看看