zoukankan      html  css  js  c++  java
  • 【树莓派编程】检测有没有物体移动 +人脸识别

    检测有没有物体移动

    import cv2
    import time
     
    camera = cv2.VideoCapture(0)
    if camera is None:
        print('请先连接摄像头')
        exit()
     
    fps = 5 # 帧率
    pre_frame = None  # 总是取前一帧做为背景(不用考虑环境影响)
     
    play_music = False
     
    while True:
        start = time.time()
        res, cur_frame = camera.read()
        if res != True:
            break
        end = time.time()
        seconds = end - start
        if seconds < 1.0/fps:
            time.sleep(1.0/fps - seconds)
    
        cv2.imshow('img', cur_frame)
        key = cv2.waitKey(30) & 0xff
        if key == 27:
            break
    
        gray_img = cv2.cvtColor(cur_frame, cv2.COLOR_BGR2GRAY)
        gray_img = cv2.resize(gray_img, (500, 500))
        gray_img = cv2.GaussianBlur(gray_img, (21, 21), 0)
     
        if pre_frame is None:
            pre_frame = gray_img
        else:
            img_delta = cv2.absdiff(pre_frame, gray_img)
            thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]
            thresh = cv2.dilate(thresh, None, iterations=2)
            image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            for c in contours:
                if cv2.contourArea(c) < 1000: # 设置敏感度
                    continue
                else:
                    #print(cv2.contourArea(c))
                    print("前一帧和当前帧不一样了, 有什么东西在动!")
                    play_music = True
                    break
     
            pre_frame = gray_img
     
    camera.release()
    cv2.destroyAllWindows()

    加入人脸识别

    import cv2
    import time
    
    save_path = './face/'
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
    eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
    
    camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头
    
    # 判断视频是否打开
    if (camera.isOpened()):
        print('Open')
    else:
        print('摄像头未打开')
    
    # 测试用,查看视频size
    size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),
            int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    print('size:'+repr(size))
    
    fps = 5  # 帧率
    pre_frame = None  # 总是取视频流前一帧做为背景相对下一帧进行比较
    i = 0
    while True:
        start = time.time()
        grabbed, frame_lwpCV = camera.read() # 读取视频流
        gray_lwpCV = cv2.cvtColor(frame_lwpCV, cv2.COLOR_BGR2GRAY) # 转灰度图
    
        if not grabbed:
            break
        end = time.time()
    
        # 人脸检测部分
        faces = face_cascade.detectMultiScale(gray_lwpCV, 1.3, 5)
        for (x, y, w, h) in faces:
            cv2.rectangle(frame_lwpCV, (x, y), (x + w, y + h), (255, 0, 0), 2)
            roi_gray_lwpCV = gray_lwpCV[y:y + h // 2, x:x + w] # 检出人脸区域后,取上半部分,因为眼睛在上边啊,这样精度会高一些
            roi_frame_lwpCV = frame_lwpCV[y:y + h // 2, x:x + w]
            cv2.imwrite(save_path + str(i) + '.jpg', frame_lwpCV[y:y + h, x:x + w]) # 将检测到的人脸写入文件
            i += 1
            eyes = eye_cascade.detectMultiScale(roi_gray_lwpCV, 1.03, 5) # 在人脸区域继续检测眼睛
            for (ex, ey, ew, eh) in eyes:
                cv2.rectangle(roi_frame_lwpCV, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)
        cv2.imshow('lwpCVWindow', frame_lwpCV)
    
        # 运动检测部分
        seconds = end - start
        if seconds < 1.0 / fps:
            time.sleep(1.0 / fps - seconds)
        gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500))
        # 用高斯滤波进行模糊处理,进行处理的原因:每个输入的视频都会因自然震动、光照变化或者摄像头本身等原因而产生噪声。对噪声进行平滑是为了避免在运动和跟踪时将其检测出来。
        gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0) 
    
        # 在完成对帧的灰度转换和平滑后,就可计算与背景帧的差异,并得到一个差分图(different map)。还需要应用阈值来得到一幅黑白图像,并通过下面代码来膨胀(dilate)图像,从而对孔(hole)和缺陷(imperfection)进行归一化处理
        if pre_frame is None:
            pre_frame = gray_lwpCV
        else:
            img_delta = cv2.absdiff(pre_frame, gray_lwpCV)
            thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]
            thresh = cv2.dilate(thresh, None, iterations=2)
            image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            for c in contours:
                if cv2.contourArea(c) < 1000: # 设置敏感度
                    continue
                else:
                    print("咦,有什么东西在动")
                    break
            pre_frame = gray_lwpCV
        key = cv2.waitKey(1) & 0xFF
        # 按'q'健退出循环
        if key == ord('q'):
            break
    # When everything done, release the capture
    camera.release()
    cv2.destroyAllWindows()

    用同事做了一下实验,hahahahhhh

    附件

    https://files.cnblogs.com/files/botoo/%E6%96%87%E4%BB%B6.rar

  • 相关阅读:
    常见的线性结构
    Lambda表达式学习笔记
    Spring Security 入门 (二)
    Spring Security 入门(一)
    Eclipse 创建 Maven 项目
    初学 Spring MVC(基于 Spring in Action)
    蓝桥杯之入学考试
    Java 学习总结
    二叉搜索树和红黑树
    Detours 劫持
  • 原文地址:https://www.cnblogs.com/botoo/p/9722155.html
Copyright © 2011-2022 走看看