zoukankan      html  css  js  c++  java
  • 简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行

    简单的java Hadoop MapReduce程序(计算平均成绩)从打包到提交及运行

    程序源码

    import java.io.IOException;
    import java.util.Iterator;
    import java.util.StringTokenizer;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
    public class Score {
        public static class Map extends
                Mapper<LongWritable, Text, Text, IntWritable> {
            // 实现map函数
            public void map(LongWritable key, Text value, Context context)
                    throws IOException, InterruptedException {
                // 将输入的纯文本文件的数据转化成String
                String line = value.toString();
                // 将输入的数据首先按行进行分割
                StringTokenizer tokenizerArticle = new StringTokenizer(line, "
    ");
                // 分别对每一行进行处理
                while (tokenizerArticle.hasMoreElements()) {
                    // 每行按空格划分
                    StringTokenizer tokenizerLine = new StringTokenizer(tokenizerArticle.nextToken());
                    String strName = tokenizerLine.nextToken();// 学生姓名部分
                    String strScore = tokenizerLine.nextToken();// 成绩部分
                    Text name = new Text(strName);
                    int scoreInt = Integer.parseInt(strScore);
                    // 输出姓名和成绩
                    context.write(name, new IntWritable(scoreInt));
                }
            }
        }
    
     
    
        public static class Reduce extends
                Reducer<Text, IntWritable, Text, IntWritable> {
            // 实现reduce函数
            public void reduce(Text key, Iterable<IntWritable> values,
                    Context context) throws IOException, InterruptedException {
                int sum = 0;
                int count = 0;
                Iterator<IntWritable> iterator = values.iterator();
                while (iterator.hasNext()) {
                    sum += iterator.next().get();// 计算总分
                    count++;// 统计总的科目数
                }
                int average = (int) sum / count;// 计算平均成绩
                context.write(key, new IntWritable(average));
            }
        }
        public static void main(String[] args) throws Exception {
            Configuration conf = new Configuration();
            // "localhost:9000" 需要根据实际情况设置一下
            conf.set("mapred.job.tracker", "localhost:9000");
          	// 一个hdfs文件系统中的 输入目录 及 输出目录
            String[] ioArgs = new String[] { "input/score", "output" };
            String[] otherArgs = new GenericOptionsParser(conf, ioArgs).getRemainingArgs();
            if (otherArgs.length != 2) {
                System.err.println("Usage: Score Average <in> <out>");
                System.exit(2);
            }
    
            Job job = new Job(conf, "Score Average");
            job.setJarByClass(Score.class);
            // 设置Map、Combine和Reduce处理类
            job.setMapperClass(Map.class);
            job.setCombinerClass(Reduce.class);
            job.setReducerClass(Reduce.class);
            // 设置输出类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            // 将输入的数据集分割成小数据块splites,提供一个RecordReder的实现
            job.setInputFormatClass(TextInputFormat.class);
            // 提供一个RecordWriter的实现,负责数据输出
            job.setOutputFormatClass(TextOutputFormat.class);
            // 设置输入和输出目录
            FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
            FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    }
    

    编译

    命令

    javac Score.java

    依赖错误

    如果出现如下错误:

    mint@lenovo ~/Desktop/hadoop $ javac Score.java 
    Score.java:4: error: package org.apache.hadoop.conf does not exist
    import org.apache.hadoop.conf.Configuration;
                                 ^
    Score.java:5: error: package org.apache.hadoop.fs does not exist
    import org.apache.hadoop.fs.Path;
                               ^
    Score.java:6: error: package org.apache.hadoop.io does not exist
    import org.apache.hadoop.io.IntWritable;
                               ^
    Score.java:7: error: package org.apache.hadoop.io does not exist
    import org.apache.hadoop.io.LongWritable;
                               ^
    Score.java:8: error: package org.apache.hadoop.io does not exist
    import org.apache.hadoop.io.Text;
    

    尝试修改环境变量CLASSPATH

    sudo vim /etc/profile
    # 添加如下内容
    export HADOOP_HOME=/usr/local/hadoop	# 如果没设置的话, 路径是hadoop安装目录
    export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH	# 如果没设置的话
    export CLASSPATH=$($HADOOP_HOME/bin/hadoop classpath):$CLASSPATH
    

    source /etc/profile

    然后重复上述编译命令.

    打包

    编译之后会生成三个class文件:

    mint@lenovo ~/Desktop/hadoop $ ls | grep class
    Score.class
    Score$Map.class
    Score$Reduce.class
    

    使用tar程序打包class文件.

    tar -cvf Score.jar ./Score*.class

    会生成Score.jar文件.

    提交运行

    样例输入

    mint@lenovo ~/Desktop/hadoop $ ls | grep txt
    chinese.txt
    english.txt
    math.txt
    mint@lenovo ~/Desktop/hadoop $ cat chinese.txt 
    Zhao 98
    Qian 9
    Sun 67
    Li 23
    mint@lenovo ~/Desktop/hadoop $ cat english.txt 
    Zhao 93
    Qian 42
    Sun 87
    Li 54
    mint@lenovo ~/Desktop/hadoop $ cat math.txt 
    Zhao 38
    Qian 45
    Sun 23
    Li 43
    

    上传到HDFS

    hdfs dfs -put ./*/txt input/score

    mint@lenovo ~/Desktop/hadoop $ hdfs dfs -ls input/score
    Found 3 items
    -rw-r--r--   1 mint supergroup         28 2017-01-11 23:25 input/score/chinese.txt
    -rw-r--r--   1 mint supergroup         29 2017-01-11 23:25 input/score/english.txt
    -rw-r--r--   1 mint supergroup         29 2017-01-11 23:25 input/score/math.txt
    

    运行

    mint@lenovo ~/Desktop/hadoop $ hadoop jar Score.jar Score input/score output
    17/01/11 23:26:26 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
    17/01/11 23:26:27 INFO input.FileInputFormat: Total input paths to process : 3
    17/01/11 23:26:27 INFO mapreduce.JobSubmitter: number of splits:3
    17/01/11 23:26:27 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
    17/01/11 23:26:27 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1484147224423_0006
    17/01/11 23:26:27 INFO impl.YarnClientImpl: Submitted application application_1484147224423_0006
    17/01/11 23:26:27 INFO mapreduce.Job: The url to track the job: http://lenovo:8088/proxy/application_1484147224423_0006/
    17/01/11 23:26:27 INFO mapreduce.Job: Running job: job_1484147224423_0006
    17/01/11 23:26:33 INFO mapreduce.Job: Job job_1484147224423_0006 running in uber mode : false
    17/01/11 23:26:33 INFO mapreduce.Job:  map 0% reduce 0%
    17/01/11 23:26:40 INFO mapreduce.Job:  map 67% reduce 0%
    17/01/11 23:26:41 INFO mapreduce.Job:  map 100% reduce 0%
    17/01/11 23:26:46 INFO mapreduce.Job:  map 100% reduce 100%
    17/01/11 23:26:46 INFO mapreduce.Job: Job job_1484147224423_0006 completed successfully
    17/01/11 23:26:47 INFO mapreduce.Job: Counters: 49
    	File System Counters
    		FILE: Number of bytes read=129
    		FILE: Number of bytes written=471147
    		FILE: Number of read operations=0
    		FILE: Number of large read operations=0
    		FILE: Number of write operations=0
    		HDFS: Number of bytes read=443
    		HDFS: Number of bytes written=29
    		HDFS: Number of read operations=12
    		HDFS: Number of large read operations=0
    		HDFS: Number of write operations=2
    	Job Counters 
    		Launched map tasks=3
    		Launched reduce tasks=1
    		Data-local map tasks=3
    		Total time spent by all maps in occupied slots (ms)=15538
    		Total time spent by all reduces in occupied slots (ms)=2551
    		Total time spent by all map tasks (ms)=15538
    		Total time spent by all reduce tasks (ms)=2551
    		Total vcore-milliseconds taken by all map tasks=15538
    		Total vcore-milliseconds taken by all reduce tasks=2551
    		Total megabyte-milliseconds taken by all map tasks=15910912
    		Total megabyte-milliseconds taken by all reduce tasks=2612224
    	Map-Reduce Framework
    		Map input records=12
    		Map output records=12
    		Map output bytes=99
    		Map output materialized bytes=141
    		Input split bytes=357
    		Combine input records=12
    		Combine output records=12
    		Reduce input groups=4
    		Reduce shuffle bytes=141
    		Reduce input records=12
    		Reduce output records=4
    		Spilled Records=24
    		Shuffled Maps =3
    		Failed Shuffles=0
    		Merged Map outputs=3
    		GC time elapsed (ms)=462
    		CPU time spent (ms)=2940
    		Physical memory (bytes) snapshot=992215040
    		Virtual memory (bytes) snapshot=7659905024
    		Total committed heap usage (bytes)=732430336
    	Shuffle Errors
    		BAD_ID=0
    		CONNECTION=0
    		IO_ERROR=0
    		WRONG_LENGTH=0
    		WRONG_MAP=0
    		WRONG_REDUCE=0
    	File Input Format Counters 
    		Bytes Read=86
    	File Output Format Counters 
    		Bytes Written=29
    

    输出

    mint@lenovo ~/Desktop/hadoop $ hdfs dfs -ls output
    Found 2 items
    -rw-r--r--   1 mint supergroup          0 2017-01-11 23:26 output/_SUCCESS
    -rw-r--r--   1 mint supergroup         29 2017-01-11 23:26 output/part-r-00000
    mint@lenovo ~/Desktop/hadoop $ hdfs dfs -cat output/part-r-00000
    Li	40
    Qian	32
    Sun	59
    Zhao	76
    
  • 相关阅读:
    SharePoint每日小贴士Web部件
    韦东山设备树课程-环境搭建【学习笔记】
    韦东山视频第3课第2节_JNI_C调用JAVA_P【学习笔记】
    韦东山视频第3课第1节_JNI_P【学习笔记】
    高通qxdm抓取sensor的log【学习笔记】
    sensor【学习笔记】
    linux驱动由浅入深系列:高通sensor架构实例分析之二(驱动代码结构)【转】
    linux驱动由浅入深系列:高通sensor架构实例分析之三(adsp上报数据详解、校准流程详解)【转】
    Android Sensor 架构深入剖析【转】
    Android Sensor详解(1)简介与架构【转】
  • 原文地址:https://www.cnblogs.com/bovenson/p/6275762.html
Copyright © 2011-2022 走看看