zoukankan      html  css  js  c++  java
  • Python 遗传算法实现字符串

    Python 遗传算法实现字符串

    流程

    1. 初始化

    2. 适应度函数

    3. 选择

    4. 交叉

    5. 变异

    适应度函数计算方法

    计算个体间的差:分别计算每个元素与目标元素的差取平方和

    种群:计算总体均值

    操作 说明
    编码方式 ASCII码
    种群规模 5000
    初始种群的个体取值范围 !!!!!!!!!!!!!!!!!!
    (33,33,33,33,33,33,33,33,33
    ,33,33,33,33,33,33,33,33,33)
    ~
    ``````````````````
    (126,126,126,126,126,126,126,126,126,
    126,126,126,126,126,126,126,126,126)
    选择操作 个体选择概率
    分配策略 根据概率保留对应个数
    个体选择方法 锦标赛选择方法
    交叉概率 0.7
    交叉方式 多点交叉
    变异方式 随机多点突变
    最大迭代步数 500

    效果图

    小结

    • 一开始我设计的选择方法是把低于平均的个体淘汰,但是这样操作会导致陷入局部最优,循环500次依旧没有结果,很难找到最优个体。后面仔细看书,用书上的锦标赛算法,提高了随机性,可以找到了目标序列。

    • 根据流程,我发现经过几轮的遗传,种群规模会迅速下降,因为中间补充的个体数量无法抵消淘汰的个体数量。于是我根据种群规模设计了阶梯式的概率,以便可以维持种群规模。

    • 对于上面的问题,我开始想在选择后立即补充
      即 y=100/7+0.05x(x为选择后剩余的种群数量),但是补充的内容无法实现最后的功能:1.补充随机新个体,这就和选择前的操作无异,种群适应度没有太大变化。2.补充选择后的个体,会导致陷入局部最优,种群发展速度慢。3.综合 1 2 补充,
      依旧没有明显效果。

    • 书上的最优概率,(主要是突变的概率非常低)对于产生新个体的速度较慢,基因重组的效果感觉不够明显,很容易陷入局部最优和陷入一个死局面,需要许久才能跳出这个局面

    • 后面我自己修改了概率,依旧有这种问题,目前还没解决。

    • 这次的代码写的比较不合理,高耦合。有许多地方可以改进,避免大量重复循环,以提高程序执行效率

    补充

    • 关于补充选择淘汰的个体,我发现可以在cross,即基因重组中改变他后代产生的children个数,直到恢复到设置的种群规模。在基因突变部分,不再是往种群中添加新的个体,而是修改现有种群的基因。
    #coding=utf-8
    import numpy as np
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import random
    
    best = [72, 101, 108, 108, 111, 44, 105,99,106,98,64,102,111,120,109,97,105,108]
    #最佳序列
    
    def get_ran(b=33,e=126):
        """
        获取随机字符值,默认从可显示字符开始(33-126)
        """
        return random.randint(b,e)
    
    def get_pos(cou=17):
        """
        获取随机位置,默认到17
        """
        return random.randint(0,cou)
    
    class Chromosome:
        """
        染色体类
        """
    
        def __init__(self,dna=None):
            """
            初始化,可指定DNA序列顺序,默认DNA为随机序列。
            """
            if dna is not None:
                self.dna = dna[:]
            else :
                self.dna = []
                for i in range(18):
                    self.dna.append(get_ran())
    
        def to_asc(self):
            """
            将DNA序列由int转为str
            """
            str = ''
            for chrx in self.dna:
                str = str + chr(chrx)
            return str
    
        def __str__(self):
            """
            将DNA序列由int转为str
            """
            str = ''
            for chrx in self.dna:
                str = str + chr(chrx)
            return str
    
        def mutation(self,which=-1):
            """
            变异操作,默认产生随机个变异位点,突变为随机值,可指定突变位置
            """
            if which == -1 :
                i = get_pos()
                for x in range(i):
                    self.dna[get_pos()] = get_ran()
            else :
                self.dna[which]=get_pos()
    
        def comp(self,other):
            """
            计算与指定序列DNA的平方差
            """
            l = []
            val = 0
            for x in range(18):
                #print(x)
                d = self.dna[x] - other.dna[x]
                d = pow(d,2)
                l.append(d)
                val = val + d
            return l,val
    
        def cross(self,other):
            """
            该染色体与其他染色体基因重组,产生新染色体,采用多点交叉
            """
            new = []
            for i in range(18):
                if get_pos(1) == 0:
                    new.append(self.dna[i])
                else :
                    new.append(other.dna[i])
            return Chromosome(new)
    
    
    class Population:
        """
        种群类
        """
    
        def __init__(self,much=5000,aim=[72, 101, 108, 108, 111, 44, 105,99,106,98,64,102,111,120,109,97,105,108]):
            """
            初始化种群,默认种群数量5000,指定序列为 Hello,icjb@foxmail
            """
            self.group = []
            self.best = Chromosome(aim)
            i = 0
            while i < much:
                self.group.append(Chromosome())
                i = i + 1
    
        def choice(self,p=0.05):
            """
            选择操作,采用锦标赛选择方法,默认保留0.05
            """
            group = []
            old = self.group[:]
            count = int(self.group.__len__() * p)
            once = int(self.group.__len__() / count)
            t_b = old[0]
            t = 0
            for ch in old:
                if t == once:
                    group.append(t_b)
                    t_b = ch
                    t = 0
                _,v1 = t_b.comp(self.best)
                _,v2 = ch.comp(self.best)
                if v1 >= v2 :
                    t_b = ch
                t = t + 1
            self.group.clear()
            self.group = group[:]
    
        def cross(self,p=0.7):
            """
            交叉操作,采用多点交叉
            """
            count = int(self.group.__len__()*p)
            i = 0
            group = []
            while i < count:
                t = self.group.__len__()
                group.append(self.group[get_pos(t-1)].cross(self.group[get_pos(t-1)]))
                i = i + 1
            self.group = self.group + group
    
        def mutation(self,p=0.001):
            """
            种群突变
            """
            count = int(self.group.__len__()*p)
            i = 0
            t = self.group.__len__()
            while i < count:
                self.group[get_pos(t-1)].mutation()
                i = i + 1
    
        def have_the_best(self):
            """
            判断是否存在目标序列
            """
            for ch in self.group:
                _,v = ch.comp(self.best)
                if v == 0 :
                    return True
            return False
                
        def value(self):
            """
            计算该种群的估值
            """
            val = 0
            for ch in self.group:
                _,v = ch.comp(self.best)
                val = val + v
            return val / self.group.__len__()
    
        def get_best(self):
            """
            获取种群最优个体
            """
            best_one = self.group[0]
            _,val = best_one.comp(self.best)
            for ch in self.group:
                _,v = ch.comp(self.best)
                if val >= v :
                    best_one = ch
                    val = v
            return best_one
    
        def big_up(self):
            self.choice(0.9)
            self.cross(1.5)
            self.mutation(0.01)
    
        def big_down(self):
            self.choice()
            self.cross()
            self.mutation()
    
    def main():
        """
        主函数
        """
        ch_b = Chromosome(best)
        po = Population(5000)
        i = 1
        vals = []
        popu = []
        while i <= 500:
            val = po.value()
            leng = po.group.__len__()
            str1 = '第 {:^4} 代: 数量为 {:^6},  估值 :{:^6}'.format(i,leng,int(val))
            str2 = ' -- 最佳 : {}'.format(po.get_best().to_asc())
            if po.group.__len__() < 500:
                #种群个体少于500,需要补充大量新个体以免灭亡
                p1 = 0.8
                p2 = 1
                p3 = 0.12
            elif po.group.__len__() < 2500:
                p1 = 0.6
                p2 = 0.99
                p3 = 0.1
            elif po.group.__len__() < 5000:
                p1 = 0.5
                p2 = 0.9
                p3 = 0.09
            elif po.group.__len__() < 8000:
                p1 = 0.3
                p2 = 0.82
                p3 = 0.08
            elif po.group.__len__() < 10000:
                p1 = 0.2
                p2 = 0.78
                p3 = 0.05
            else :
                #默认操作
                p1 = 0.05
                p2 = 0.7
                p3 = 0.001
    
            # #但估值趋于稳定时,刺激种群
            # if val < 1000 :
            #     p1 = p1 - 0.5
            #     if p1 <= 0 :
            #         p1 = 0.05
            #     p2 = p2 + 0.3
            #     p3 = p3 + 0.05
    
            #模拟突增突降,可选
            # if get_pos(100) < 5 :
            #     po.big_down()
            #     print('big-down')
            # if get_pos(100) > 95 :
            #     po.big_up()
            #     print('big-up')
    
            print(str1+str2)
            #print(str2)
            po.choice(p1)
            if po.have_the_best() :
                print('找到目标!')
                print(ch_b.to_asc())
                break
            po.cross(p2)
            po.mutation(p3)
            vals.append(val)
            popu.append(leng)
            i = i + 1
        
        #绘图
        plt.figure(1)
        plt.subplot(121)
        x = range(i-1)
        y = vals[:]
        plt.plot(x,y)
        plt.subplot(122)
        y = popu[:]
        plt.plot(x,y)
        plt.show()
    
    if __name__ == "__main__":
        """
        """
        main()
        input()
    

    参考

    遗传算法(python版) - 远方不远 - CSDN博客

    一文读懂遗传算法工作原理(附Python实现)

    【算法】超详细的遗传算法(Genetic Algorithm)解析 - 简书

    遗传算法学习笔记(一):常用的选择策略 - 依然传奇 - 博客园

    遗传算法选择策略比较 - 道客巴巴

    基于遗传算法的人工智能实例之拼图游戏(python实现) - 不基调的博客 - CSDN博客

    另一版本实现方式,改自GITHUB:

    import numpy as np
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import time
    
    from random import (choice, random, randint)
    
    __all__ = ['Chromosome', 'Population']
    
    class Chromosome:
        _target_gene = "Hello, icjb@foxmail.com"
        def __init__(self, gene):
            self.gene = gene
            self.fitness = Chromosome._update_fitness(gene)
        
        def mate(self, mate):
            pivot = randint(0, len(self.gene) - 1)
            gene1 = self.gene[:pivot] + mate.gene[pivot:]
            gene2 = mate.gene[:pivot] + self.gene[pivot:]        
            return Chromosome(gene1), Chromosome(gene2)
        
        def mutate(self):
            gene = list(self.gene)
            delta = randint(44, 122)
            idx = randint(0, len(gene) - 1)
            gene[idx] = chr((ord(gene[idx]) + delta) % 123)
            
            return Chromosome(''.join(gene))
    
        @staticmethod            
        def _update_fitness(gene):
            fitness = 0
            for a, b in zip(gene, Chromosome._target_gene):
                fitness += abs(ord(a) - ord(b))          
            return fitness
            
        @staticmethod
        def gen_random():
            gene = []
            for x in range(len(Chromosome._target_gene)):
                gene.append(chr(randint(44, 122)))
                    
            return Chromosome(''.join(gene))
            
    class Population:
        _tournamentSize = 3
        def __init__(self, size=1024, crossover=0.8, elitism=0.1, mutation=0.3):
            self.elitism = elitism
            self.mutation = mutation
            self.crossover = crossover
            buf = []
            for i in range(size): buf.append(Chromosome.gen_random())
            self.population = list(sorted(buf, key=lambda x: x.fitness))
                            
        def _tournament_selection(self):
            best = choice(self.population)
            for i in range(Population._tournamentSize):
                cont = choice(self.population)
                if (cont.fitness < best.fitness): best = cont
                        
            return best
    
        def _selectParents(self):                 
            return (self._tournament_selection(), self._tournament_selection())
            
        def evolve(self):
            size = len(self.population)
            idx = int(round(size * self.elitism))
            buf = self.population[:idx]
            
            while (idx < size):
                if random() <= self.crossover:
                    (p1, p2) = self._selectParents()
                    children = p1.mate(p2)
                    for c in children:
                        if random() <= self.mutation:
                            buf.append(c.mutate())
                        else:
                            buf.append(c)
                    idx += 2
                else:
                    if random() <= self.mutation:
                        buf.append(self.population[idx].mutate())
                    else:
                        buf.append(self.population[idx])
                    idx += 1
            
            self.population = list(sorted(buf[:size], key=lambda x: x.fitness))
    
    if __name__ == "__main__":
        maxGenerations = 2000
        t1 = time.time()
        pop = Population(size=2000, crossover=0.7, elitism=0.05, mutation=0.9)
        li = []
        x = []
        for i in range(1, maxGenerations + 1):
            print("Generation %d  Fitness:%d  Result:%s" % (i, Chromosome._update_fitness(pop.population[0].gene),pop.population[0].gene) )
            if pop.population[0].fitness == 0: break
            else:pop.evolve()
            li.append(Chromosome._update_fitness(pop.population[0].gene))
            xx = 0
            for p in range(pop.population.__len__()):
                xx += Chromosome._update_fitness(pop.population[p].gene)
            xx = xx / pop.population.__len__()
            x.append(xx)
        x.sort()
        print(x[0])
        print("Maximum generations reached without success.")
        t2 = time.time()
        t = int(t2 - t1)
        print(f'+ 共用时: {t} s')
        plt.figure(1)
        plt.subplot(111)
        x = range(i-1)
        y = li[:]
        plt.plot(x,y)
        plt.xlabel("generation",fontsize=12)
        plt.ylabel("fitness",fontsize=12)
        plt.show()
    
    
  • 相关阅读:
    2018.11.5 Nescafe26 T1 小猫爬山
    2018.10.30 NOIp模拟赛T2 数字对
    2018.10.30 NOIp模拟赛 T1 改造二叉树
    2018/7/16 YMOI模拟 NOIP2013D2T3华容道
    数据结构实验
    我的第一个博客
    题解 P5035 【金坷垃】
    题解 P5036 【随机生成树】
    题解 P5037 【抓捕】
    题解 P1328 【生活大爆炸版石头剪刀布】
  • 原文地址:https://www.cnblogs.com/boxker/p/10720222.html
Copyright © 2011-2022 走看看