zoukankan      html  css  js  c++  java
  • D-Big Integer_2019牛客暑期多校训练营(第三场)

    题意

    设A(n) = n个1,问有多少对i,j使得(A(i^j)equiv0(modp))

    题解

    (A(n) = frac{10^n-1}{9})
    当9与p互质时(frac{10^n-1}{9}\%p = (10^n-1)cdot inv[9] \% p)
    移动项得到(10^nequiv1(modp))
    由欧拉定理当(gcd(10,p) = 1)(10^{varphi(p)}equiv1(modp))
    那么只要找到最小的d使得(10^dequiv1(modp))
    问题就转化成求有多少对i,j使得(i^jequiv0(modp))
    求d只需要枚举(varphi(p))的因子就好了
    对d分解(d = p_1^{k_1}p_2^{k_2}cdots p_n^{k_n})
    固定j,要使(i^j)是d的倍数,那么i一定是(p_1^{lceilfrac{k_1}{j} ceil}p_2^{lceilfrac{k_2}{j} ceil}cdots p_n^{lceilfrac{k_n}{j} ceil})的倍数
    (g_j = p_1^{lceilfrac{k_1}{j} ceil}p_2^{lceilfrac{k_2}{j} ceil}cdots p_n^{lceilfrac{k_n}{j} ceil}),答案就是(sum_{j=1}^mg_j),因为(k_i)不会超过30,
    当j大于30时的(g_j)都一样就不用重复计算了
    还有一个问题,当p=3时,因为9与3不互质,inv[9]不存在,式子(frac{10^n-1}{9}\%p Longleftrightarrow (10^n-1)cdot inv[9] \% p)
    就不成立,需要特判,此时d取3

    代码

    #include <bits/stdc++.h>
     
    using namespace std;
    const int mx = 3e5+10;
    typedef long long ll;
     
    ll pow_mod(ll a, ll b, ll mod) {
        ll ans = 1;
        while (b > 0) {
            if (b & 1) ans = ans * a % mod;
            a = a * a % mod;
            b /= 2;
        }
        return ans;
    }
     
    ll pow_mod(ll a, ll b) {
        ll ans = 1;
        while (b > 0) {
            if (b & 1) ans = ans * a;
            a = a * a;
            b /= 2;
        }
        return ans;
    }
     
    vector <ll> pp, k;
     
    int main() {
        int T;
        scanf("%d", &T);
     
        while (T--) {
            ll p, n, m, d;
            scanf("%lld%lld%lld", &p, &n, &m);
            if (p == 2 || p == 5) {
                printf("0
    ");
                continue;
            }
            d = p-1;
            for (ll i = 1; i*i <= (p-1); i++) {
                if ((p-1) % i == 0) {
                    if (pow_mod(10, i, p) == 1) {
                        d = min(d, i);
                    }
                    if (pow_mod(10, (p-1)/i, p) == 1) {
                        d = min(d, (p-1)/i);
                    }
                }
            }
            if (p == 3) d = 3;
            pp.clear(); k.clear();
            ll ans = 0;
            for (ll i = 2; i*i <= d; i++) {
                if (d % i == 0) {
                    int tmp = 0;
                    while (d % i == 0) {
                        tmp++;
                        d /= i;
                    }
                    k.push_back(tmp);
                    pp.push_back(i);
                }
            }
            if (d > 1) pp.push_back(d), k.push_back(1);
     
            ll tmp = 1;
            for (int i = 1; i <= min(30LL, m); i++) {
                tmp = 1;
                for (int j = 0; j < pp.size(); j++) {
                    ll b = k[j] / i;
                    if (k[j] % i != 0) b++;
                    tmp *= pow_mod(pp[j], b);
                }
                ans += n / tmp;
            }
            if (m > 30) ans += n / tmp * (m-30);
            printf("%lld
    ", ans);
        }
        return 0;
    }
    
  • 相关阅读:
    Android Studio 自定义签名,代码段快捷键
    Hardware Acceleration
    AsyncTask
    Process and Threads
    android通讯录开发及优化
    短信验证码SDK
    怎样让Mac成为一个有效的生产力工具
    GitHub开源项目
    jquery $(document).ready() 与window.onload的区别
    【Ionic+AngularJS 开发】之『个人日常管理』App(二)
  • 原文地址:https://www.cnblogs.com/bpdwn-cnblogs/p/11289798.html
Copyright © 2011-2022 走看看