zoukankan      html  css  js  c++  java
  • hdu-6621 K-th Closest Distance

    题目链接

    K-th Closest Distance

    Problem Description

    You have an array: a1, a2, �, an and you must answer for some queries.
    For each query, you are given an interval [L, R] and two numbers p and K. Your goal is to find the Kth closest distance between p and aL, aL+1, ..., aR.
    The distance between p and ai is equal to |p - ai|.
    For example:
    A = {31, 2, 5, 45, 4 } and L = 2, R = 5, p = 3, K = 2.
    |p - a2| = 1, |p - a3| = 2, |p - a4| = 42, |p - a5| = 1.
    Sorted distance is {1, 1, 2, 42}. Thus, the 2nd closest distance is 1.

    Input

    The first line of the input contains an integer T (1 <= T <= 3) denoting the number of test cases.
    For each test case:
    冘The first line contains two integers n and m (1 <= n, m <= 10^5) denoting the size of array and number of queries.
    The second line contains n space-separated integers a1, a2, ..., an (1 <= ai <= 10^6). Each value of array is unique.
    Each of the next m lines contains four integers L', R', p' and K'.
    From these 4 numbers, you must get a real query L, R, p, K like this:
    L = L' xor X, R = R' xor X, p = p' xor X, K = K' xor X, where X is just previous answer and at the beginning, X = 0.
    (1 <= L < R <= n, 1 <= p <= 10^6, 1 <= K <= 169, R - L + 1 >= K).

    Output

    For each query print a single line containing the Kth closest distance between p and aL, aL+1, ..., aR.

    Sample Input

    1
    5 2
    31 2 5 45 4
    1 5 5 1
    2 5 3 2

    Sample Output

    0
    1

    题意

    给出一个数组,m个询问l, r, p,k区间([l, r])(|p-a_i|)第k大的值是多少,ai相同多次计算

    题解

    二分答案,那么(|p-a_i| leq ans Rightarrow p-ans leq ai leq p+ans),利用主席树判断区间([l,r])内的(a_i)满足上面限制的数是否大于等于k个,少于k个则增大ans,多于则减小ans,复杂度(O(nlog^2n))

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    using namespace std;
    const int mx = 1e5+5;
    typedef long long ll;
    
    int a[mx], root[mx], cnt;
    vector <int> v;
    struct node {
       int l, r, sum;
    }T[mx*40];
    
    int getid(int x) {
       return lower_bound(v.begin(), v.end(), x) - v.begin() + 1;
    }
    
    void update(int l, int r, int &x, int y, int pos) {
       T[++cnt] = T[y]; T[cnt].sum++; x = cnt;
       if (l == r) return;
       int mid = (l+r) / 2;
       if (mid >= pos) update(l, mid, T[x].l, T[y].l, pos);
       else update(mid+1, r, T[x].r, T[y].r, pos);
    }
    
    
    int query(int l, int r, int x, int y, int k) {
        if (k == 0) return 0;
        if (1 <= l && r <= k) {
            return T[y].sum - T[x].sum;
        }
        int mid = (l + r) / 2;
        int ans = 0;
        if (1 <= mid) ans += query(l, mid, T[x].l, T[y].l, k);
        if (mid < k && mid < r) ans += query(mid+1, r, T[x].r, T[y].r, k);
        return ans;
    }
    
    int main() {
        int T;
        scanf("%d", &T);
    
        while (T--) {
            v.clear();  cnt = 0;
            int n, m;
            scanf("%d%d", &n, &m);
    
            for (int i = 1; i <= n; i++) {
                scanf("%d", &a[i]);
                v.push_back(a[i]);
            }
            sort(v.begin(), v.end());
            v.erase(unique(v.begin(), v.end()), v.end());
            for (int i = 1; i <= n; i++) update(1, n, root[i], root[i-1], getid(a[i]));
    
            int l, r, p, k, ans = 0;
            while (m--) {
                scanf("%d%d%d%d", &l, &r, &p, &k);
                l = l^ans;
                r = r^ans;
                p = p^ans;
                k = k^ans;
                int pk = query(1, n, root[l-1], root[r], p);
                int L = 0, R = 0x3f3f3f3f;
                while (L < R) {
                    int mid = (L + R) / 2;
                    int Lid = getid(p-mid) - 1;
                    int Rid = getid(p+mid);
                    if (v[Rid-1] != p+mid) Rid--;
                    int sum = query(1, n, root[l-1], root[r], Lid) + (r-l+1- query(1, n, root[l-1], root[r], Rid));
                    sum = (r-l+1 - sum);
                    if (sum >= k) R = mid;
                    else L = mid + 1;
                }
                ans = L;
                printf("%d
    ", ans);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    2017.3.11[bzoj2440][中山市选2011]完全平方数
    2017.3.6[hihocoder#1415]后缀数组三·重复旋律3
    2017.3.4[hihocoder#1407]后缀数组二·重复旋律2
    [NOI2013]快餐店
    [HNOI2014]米特运输
    [HNOI2015]亚瑟王
    [JLOI2013]卡牌游戏
    [SDOI2010]地精部落
    [ZJOI2007]棋盘制作
    [AHOI2009]中国象棋
  • 原文地址:https://www.cnblogs.com/bpdwn-cnblogs/p/11290949.html
Copyright © 2011-2022 走看看