题目链接
Problem Description
Rounddog always has an array a1,a2,⋯,an in his right pocket, satisfying 1≤ai≤n.
A subarray is a non-empty subsegment of the original array. Rounddog defines a good subarray as a subsegment al,al+1,⋯,ar that all elements in it are different and max(al,al+1,…,ar)−(r−l+1)≤k.
Rounddog is not happy today. As his best friend, you want to find all good subarrays of a to make him happy. In this case, please calculate the total number of good subarrays of a.
Input
The input contains several test cases, and the first line contains a single integer T (1≤T≤20), the number of test cases.
The first line of each test case contains two integers n (1≤n≤300000) and k (1≤k≤300000).
The second line contains n integers, the i-th of which is ai (1≤ai≤n).
It is guaranteed that the sum of n over all test cases never exceeds 1000000.
Output
One integer for each test case, representing the number of subarrays Rounddog likes.
Sample Input
2
5 3
2 3 2 2 5
10 4
1 5 4 3 6 2 10 8 4 5
Sample Output
7
31
题意
给出一个数组a和k,问有多少对(l,r)满足(max(al,al+1,…,ar)−(r−l+1)≤k)
题解
用启发式分治的方法遍历每个最大值掌控的区间,记区间为([l,r]),最大值在mid位置上,如果左区间更小就遍历左区间,计算以左区间每个点为左端点的方案数,否则就遍历右区间,预处理一个数组pre[i]表示以i向右最多延伸到哪里,使i到pre[i]数字不重复,suf[i]表示i向左最多延伸到哪里,使得suf[i]到i数字不重复,这样就能O(1)计算以每个点为左端点的方案数了。总体复杂度(O(nlog n))
代码
#include <bits/stdc++.h>
using namespace std;
const int mx = 3e5+5;
int a[mx], pre[mx], suf[mx];
int n, k;
bool vis[mx];
struct Node {
int v, pos;
}tree[mx<<2];
void pushUp(int rt) {
tree[rt].v = max(tree[rt<<1].v, tree[rt<<1|1].v);
tree[rt].pos = (tree[rt<<1].v > tree[rt<<1|1].v ? tree[rt<<1].pos : tree[rt<<1|1].pos);
}
void build(int l, int r, int rt) {
if (l >= r) {
tree[rt].v = a[r];
tree[rt].pos = r;
return;
}
int mid = (l + r) / 2;
build(l, mid, rt<<1);
build(mid+1, r, rt<<1|1);
pushUp(rt);
}
int query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) return tree[rt].pos;
int mid = (l + r) / 2;
int pos1 = -1, pos2 = -1;
if (L <= mid) pos1 = query(L, R, l, mid, rt<<1);
if (mid < R) pos2 = query(L, R, mid+1, r, rt<<1|1);
if (pos1 == -1) return pos2;
else if (pos2 == -1) return pos1;
else return a[pos1] > a[pos2] ? pos1 : pos2;
}
void dfs(int l, int r, long long &ans) {
if (l > r) return;
int mid = query(l, r, 1, n, 1);
int len = max(1, a[mid]-k);
if (mid-l <= r-mid) {
for (int i = l; i <= mid; i++) {
int L = max(mid, i+len-1);
int R = min(pre[i], r);
ans += max(0, R-L+1);
}
} else {
for (int i = mid; i <= r; i++) {
int R = min(mid, i-len+1);
int L = max(suf[i], l);
ans += max(0, R-L+1);
}
}
dfs(l, mid-1, ans);
dfs(mid+1, r, ans);
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
build(1, n, 1);
int pos = 0;
for (int i = 1; i <= n; i++) {
while (pos < n && !vis[a[pos+1]]) {
pos++;
vis[a[pos]] = true;
}
pre[i] = pos;
vis[a[i]] = false;
}
pos = n+1;
for (int i = n; i >= 1; i--) {
while (pos > 1 && !vis[a[pos-1]]) {
pos--;
vis[a[pos]] = true;
}
suf[i] = pos;
vis[a[i]] = false;
}
long long ans = 0;
dfs(1, n, ans);
printf("%lld
", ans);
}
return 0;
}