zoukankan      html  css  js  c++  java
  • hadoop分布式集群的搭建

    电脑如果是8G内存或者以下建议搭建3节点集群,如果是搭建5节点集群就要增加内存条了。当然实际开发中不会用虚拟机做,一些小公司刚刚起步的时候会采用云服务,因为开始数据量不大。

    但随着数据量的增大才会考虑搭建自己的集群,中大型公司肯定会搭建自己的专属集群,毕竟云服务用起来方便,但是还是有很多的局限性。

    简单的集群架构图

    1.journalnode来现主备节点之间的数据共享。

    2.zookeeper实现主备节点的切换,通过选举机制来实现的。

    1. 内存的选择一部是大内存容量的,64G 128G以上的,磁盘选择TB级别的,企业里会根据数据量的增大定期添加服务器,一般需要提前规划好,大概一年添加一次这样。

    2.集群的部署方面,主节点和从节点是分开部署的,但一定要注意了,计算节点跟数据节点一定要部署在同一个节点上,datanode和nodemanager。

    3.如果集群规模比较小20--30台机器这样子,namenode和resourcemanager可以部署在同一个节点上。

    4.影响集群规模的因素还有在做高可用HA的时候,namenode和resourcemanager的高可用,还有就是客户的client要跟连接到集群上,我们建议客户端跟集群单独部署。

    5.从性能考虑集群是规模,比如说处理1T的数据需要多少时间,比方说导入1T的数据要求是1个小时,对功能性要要求的。

    6.可靠性需要,比如说系统一个月只能运行当机一次,可用性考虑,如果当机了要花多少时间能恢复,比如说要2个小时。所以在选择机器的时候可以廉价但不能太廉价,不能以后都把时间花在维护上面。还有就是每个节点的故障率,单个节点当机恢复时间也不能太久。

    7.容错性需求,比如说节点当机或者硬件损坏了,但我们尽可能不能让数据丢失,或者说能恢复部分数据,对恢复时间有要求,namenode当机了恢复时间也需要快点。

    8.还有就是机架--机架感知。

    HADOOP HA

     

    启动集群的时候要注意了先启动zookeeper,再启动hadoop,关闭的时候先关闭hadoop,再关闭zookeeper。 

    这个共享存储存的是编辑日志editlog.

    Datanode这执行Active状态的Namenode命令

     

    如何克隆节点:

    先在想克隆的节点那里选中克隆选项,必须确保是关闭状态的

     

     

    现在打开克隆好的节点

    会发现主机名跟之前的是一样的,所以这里需要我们自己去修改了。

    由于各个克隆出来的节点还不能上网

     ping他的网关是不通的,可能是网卡没启动,需要我们去修改网卡了!

     

    经过查看网卡已经启动了!ONBOOT=yes

    是因为我们克隆了又两个网卡,网卡的地址不一样

     我们可以看到有两个网卡,正常情况下只有eth0网卡,克隆完了之后多了一个eth1网卡

    接下来我们需要做的就是把eth0注释掉,把eth1改成eth0,同时把eth1的这个地址记下来

    把他修改一下

    把刚刚记下来的地址修改到这里来

    路径在这里

     保存之后重启一下网卡,结果发现重启失败!!

     那我们就是reboot重启一下系统

    重启之后可以看到网卡启动成功了

    网卡能ping通了

    查看一下他的ip地址

    可以看到是一个静态ip地址,也就是说跟克隆前的那个节点是一样的,毕竟是克隆过来嘛,所以可以根据自己的需要去进行修改。

    ping一下他的ip地址也是可以ping通的

    可以看到网络是通的

    好了,现在实现了克隆完节点之后的网络通信的几个步骤,关于这点我之前一直不敢去克隆。建议大家克隆完以后把主机名、ip地址都修改一下,不要跟之前的重复了,不然一起启动的时候容易出问题的。

    (四)集群安装前的环境检查

    时钟同步

    所有节点的系统时间要与当前时间保持一致。

    查看当前系统时间

    date
    Tue Nov  3 06:06:04 CST 2015

    如果系统时间与当前时间不一致,进行以下操作。

    [root@hadoop11 ~]# cd /usr/share/zoneinfo/
    [root@hadoop11 zoneinfo]# ls		//找到Asia
    [root@hadoop11 zoneinfo]# cd Asia/		//进入Asia目录
    [root@hadoop11 Asia]# ls		//找到Shanghai
    [root@hadoop11 Asia]# cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime		//当前时区替换为上海
    

    我们可以同步当前系统时间和日期与NTP(网络时间协议)一致。

    [root@hadoop11 Asia]# yum install ntp   //如果ntp命令不存在,在线安装ntp
    [root@hadoop11 Asia]# ntpdate pool.ntp.org		//执行此命令同步日期时间
    [root@hadoop11 Asia]# date		//查看当前系统时间

    hosts文件检查

    所有节点的hosts文件都要配置静态ip与hostname之间的对应关系。

    [root@hadoop11 Asia]# vi /etc/hosts
    192.168.1.171 hadoop11
    192.168.1.172 hadoop12
    192.168.1.173 hadoop13
    192.168.1.174 hadoop14
    192.168.1.175 hadoop15

    禁用防火墙

    所有节点的防火墙都要关闭。

    查看防火墙状态

    [root@hadoop11 Asia]# service iptables status
    iptables: Firewall is not running.

    如果不是上面的关闭状态,则需要关闭防火墙。

    [root@hadoop11 Asia]#  chkconfig iptables off		//永久关闭防火墙
    [root@hadoop11 Asia]#  service iptables stop		//临时关闭防火墙

    (五)配置SSH免密码通信

    这里我们以hadoop11来配置ssh。

    [root@hadoop11 ~]# su hadoop		//切换到hadoop用户下
    [hadoop@hadoop11 root]$ cd		//切换到hadoop用户目录
    [hadoop@hadoop11 ~]$ mkdir .ssh
    [hadoop@hadoop11 ~]$ ssh-keygen -t rsa		//执行命令一路回车,生成秘钥
    [hadoop@hadoop11 ~]$cd .ssh 
    [hadoop@hadoop11 .ssh]$ ls
    id_rsa  id_rsa.pub
    [hadoop@hadoop11 .ssh]$ cat id_rsa.pub >> authorized_keys		//将公钥保存到authorized_keys认证文件中
    [hadoop@hadoop11 .ssh]$ ls
    authorized_keys  id_rsa  id_rsa.pub
    [hadoop@hadoop11 .ssh]$ cd ..
    [hadoop@hadoop11 ~]$ chmod 700 .ssh
    [hadoop@hadoop11 ~]$ chmod 600 .ssh/*
    [hadoop@hadoop11 ~]$ ssh hadoop11		//第一次执行需要输入yes
    [hadoop@hadoop11 ~]$ ssh hadoop11		//第二次以后就可以直接访问
    

    集群所有节点都要行上面的操作。

    将所有节点中的共钥id_ras.pub拷贝到hadoop11中的authorized_keys文件中。

    cat ~/.ssh/id_rsa.pub | ssh hadoop@hadoop11 'cat >> ~/.ssh/authorized_keys'  所有节点都需要执行这条命令

    然后将hadoop11中的authorized_keys文件分发到所有节点上面。

    scp -r authorized_keys hadoop@hadoop12:~/.ssh/
    
    scp -r authorized_keys hadoop@hadoop13:~/.ssh/
    
    scp -r authorized_keys hadoop@hadoop14:~/.ssh/
    
    scp -r authorized_keys hadoop@hadoop15:~/.ssh/

    大家通过ssh 相互访问,如果都能无密码访问,代表ssh配置成功。

    (六)脚本工具的使用

    在hadoop11节点上创建/home/hadoop/tools目录。

    [hadoop@hadoop11 ~]$ mkdir /home/hadoop/tools
    cd /home/hadoop/tools
    

    将本地脚本文件上传至/home/hadoop/tools目录下。这些脚本大家如果能看懂也可以自己写, 如果看不懂直接使用就可以,后面慢慢补补Linux相关的知识。

    [hadoop@hadoop11 tools]$ rz deploy.conf
    [hadoop@hadoop11 tools]$ rz deploy.sh
    [hadoop@hadoop11 tools]$ rz runRemoteCmd.sh
    [hadoop@hadoop11 tools]$ ls
    deploy.conf  deploy.sh  runRemoteCmd.sh
    

    查看一下deploy.conf配置文件内容。

    [hadoop@hadoop11 tools]$ cat deploy.conf
    hadoop11,all,namenode,zookeeper,resourcemanager,
    hadoop12,all,slave,namenode,zookeeper,resourcemanager,
    hadoop13,all,slave,datanode,zookeeper,
    hadoop14,all,slave,datanode,zookeeper,
    hadoop15,all,slave,datanode,zookeeper,
    

    查看一下deploy.sh远程复制文件脚本内容。

    [hadoop@hadoop11 tools]$ cat deploy.sh
    #!/bin/bash
    #set -x
    
    if [ $# -lt 3 ]
    then 
      echo "Usage: ./deply.sh srcFile(or Dir) descFile(or Dir) MachineTag"
      echo "Usage: ./deply.sh srcFile(or Dir) descFile(or Dir) MachineTag confFile"
      exit 
    fi
    
    src=$1
    dest=$2
    tag=$3
    if [ 'a'$4'a' == 'aa' ]
    then
      confFile=/home/hadoop/tools/deploy.conf
    else 
      confFile=$4
    fi
    
    if [ -f $confFile ]
    then
      if [ -f $src ]
      then
        for server in `cat $confFile|grep -v '^#'|grep ','$tag','|awk -F',' '{print $1}'` 
        do
           scp $src $server":"${dest}
        done 
      elif [ -d $src ]
      then
        for server in `cat $confFile|grep -v '^#'|grep ','$tag','|awk -F',' '{print $1}'` 
        do
           scp -r $src $server":"${dest}
        done 
      else
          echo "Error: No source file exist"
      fi
    
    else
      echo "Error: Please assign config file or run deploy.sh command with deploy.conf in same directory"
    fi
    

    查看一下runRemoteCmd.sh远程执行命令脚本内容。

    [hadoop@hadoop11 tools]$ cat runRemoteCmd.sh 
    #!/bin/bash
    #set -x
    
    if [ $# -lt 2 ]
    then 
      echo "Usage: ./runRemoteCmd.sh Command MachineTag"
      echo "Usage: ./runRemoteCmd.sh Command MachineTag confFile"
      exit 
    fi
    
    cmd=$1
    tag=$2
    if [ 'a'$3'a' == 'aa' ]
    then
      
      confFile=/home/hadoop/tools/deploy.conf
    else 
      confFile=$3
    fi
    
    if [ -f $confFile ]
    then
        for server in `cat $confFile|grep -v '^#'|grep ','$tag','|awk -F',' '{print $1}'` 
        do
           echo "*******************$server***************************"
           ssh $server "source /etc/profile; $cmd"
        done 
    else
      echo "Error: Please assign config file or run deploy.sh command with deploy.conf in same directory"
    fi

    以上三个文件,方便我们搭建hadoop分布式集群。具体如何使用看后面如何操作。

    如果我们想直接使用脚本,还需要给脚本添加执行权限。

    [hadoop@hadoop11 tools]$ chmod u+x deploy.sh
    [hadoop@hadoop11 tools]$ chmod u+x runRemoteCmd.sh
    

    同时我们需要将/home/hadoop/tools目录配置到PATH路径中。

    [hadoop@hadoop11 tools]$ su root
    Password:
    [root@hadoop11 tools]# vi /etc/profile
    PATH=/home/hadoop/tools:$PATH
    export PATH
    

    我们在hadoop11节点上,通过runRemoteCmd.sh脚本,一键创建所有节点的软件安装目录/home/hadoop/app。

    [hadoop@hadoop11 tools]$ runRemoteCmd.sh "mkdir /home/hadoop/app" all
    

    我们可以在所有节点查看到/home/hadoop/app目录已经创建成功。

    (七)jdk安装

    将本地下载好的jdk1.7,上传至hadoop11节点下的/home/hadoop/app目录。

    [root@hadoop11 tools]# su hadoop
    [hadoop@hadoop11 tools]$ cd /home/hadoop/app/
    [hadoop@hadoop11 app]$ rz		//选择本地的下载好的jdk-7u79-linux-x64.tar.gz
    [hadoop@hadoop11 app]$ ls
    jdk-7u79-linux-x64.tar.gz
    [hadoop@hadoop11 app]$ tar zxvf jdk-7u79-linux-x64.tar.gz 		//解压
    [hadoop@hadoop11 app]$ ls
    jdk1.7.0_79 jdk-7u79-linux-x64.tar.gz
    [hadoop@hadoop11 app]$ rm jdk-7u79-linux-x64.tar.gz		//删除安装包
    

    添加jdk环境变量。

    [hadoop@hadoop11 app]$ su root
    Password:
    [root@hadoop11 app]# vi /etc/profile
    JAVA_HOME=/home/hadoop/app/jdk1.7.0_79
    CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
    PATH=$JAVA_HOME/bin:$PATH
    export JAVA_HOME CLASSPATH PATH
    [root@hadoop11 app]# source /etc/profile		//使配置文件生效
    

    查看jdk是否安装成功。

    [root@hadoop11 app]# java -version
    java version "1.7.0_79"
    Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
    Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)

    出现以上结果就说明hadoop11节点上的jdk安装成功。

    然后将hadoop11下的jdk安装包复制到其他节点上。

    [hadoop@hadoop11 app]$ deploy.sh jdk1.7.0_79 /home/hadoop/app/ slave
    

    hadoop12,hadoop13,hadoop14,hadoop15节点重复hadoop11节点上的jdk配置即可。

    (八)Zookeeper安装

    将本地下载好的zookeeper-3.4.6.tar.gz安装包,上传至hadoop11节点下的/home/hadoop/app目录下。

    [hadoop@hadoop11 app]$ rz		//选择本地下载好的zookeeper-3.4.6.tar.gz
    [hadoop@hadoop11 app]$ ls
    jdk1.7.0_79 zookeeper-3.4.6.tar.gz
    [hadoop@hadoop11 app]$ tar zxvf zookeeper-3.4.6.tar.gz		//解压
    [hadoop@hadoop11 app]$ ls
    jdk1.7.0_79 zookeeper-3.4.6.tar.gz zookeeper-3.4.6
    [hadoop@hadoop11 app]$ rm zookeeper-3.4.6.tar.gz		//删除zookeeper-3.4.6.tar.gz安装包
    [hadoop@hadoop11 app]$ mv zookeeper-3.4.6 zookeeper		//重命名
    		

    修改Zookeeper中的配置文件。

    [hadoop@hadoop11 app]$ cd /home/hadoop/app/zookeeper/conf/
    [hadoop@hadoop11 conf]$ ls
    configuration.xsl  log4j.properties  zoo_sample.cfg
    [hadoop@hadoop11 conf]$ cp zoo_sample.cfg zoo.cfg		//复制一个zoo.cfg文件
    [hadoop@hadoop11 conf]$ vi zoo.cfg
    dataDir=/home/hadoop/data/zookeeper/zkdata		//数据文件目录
    dataLogDir=/home/hadoop/data/zookeeper/zkdatalog		//日志目录
    # the port at which the clients will connect
    clientPort=2181		//默认端口号
    #server.服务编号=主机名称:Zookeeper不同节点之间同步和通信的端口:选举端口(选举leader)
    server.1=hadoop11:2888:3888
    server.2=hadoop12:2888:3888
    server.3=hadoop13:2888:3888
    server.4=hadoop14:2888:3888
    server.5=hadoop15:2888:3888

    通过远程命令deploy.sh将Zookeeper安装目录拷贝到其他节点上面。

    [hadoop@hadoop11 app]$ deploy.sh zookeeer /home/hadoop/app  slave

    通过远程命令runRemoteCmd.sh在所有的节点上面创建目录:

    [hadoop@hadoop11 app]$ runRemoteCmd.sh "mkdir -p /home/hadoop/data/zookeeper/zkdata" all   //创建数据目录
    [hadoop@hadoop11 app]$ runRemoteCmd.sh "mkdir -p /home/hadoop/data/zookeeper/zkdatalog" all   //创建日志目录

    然后分别在hadoop11、hadoop12、hadoop13、hadoop14、hadoop15上面,进入zkdata目录下,创建文件myid,里面的内容分别填充为:1、2、3、4、5, 这里我们以hadoop11为例。

    [hadoop@hadoop11 app]$ cd /home/hadoop/data/zookeeper/zkdata
    [hadoop@hadoop11 zkdata]$ vi myid
    1	//输入数字1
    		

    配置Zookeeper环境变量。

    [hadoop@hadoop11 zkdata]$ su root
    Password: 
    [root@hadoop11 zkdata]# vi /etc/profile
    JAVA_HOME=/home/hadoop/app/jdk1.7.0_79
    ZOOKEEPER_HOME=/home/hadoop/app/zookeeper
    CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
    PATH=$JAVA_HOME/bin:$ZOOKEEPER_HOME/bin:$PATH
    export JAVA_HOME CLASSPATH PATH ZOOKEEPER_HOME
    [root@hadoop11 zkdata]# source /etc/profile		//使配置文件生效

    在hadoop11节点上面启动Zookeeper。

    [hadoop@hadoop11 zkdata]$ cd /home/hadoop/app/zookeeper/
    [hadoop@hadoop11 zookeeper]$ bin/zkServer.sh start
    [hadoop@hadoop11 zookeeper]$ jps
    3633 QuorumPeerMain
    [hadoop@hadoop11 zookeeper]$ bin/zkServer.sh stop		//关闭Zookeeper	
    

    使用runRemoteCmd.sh 脚本,启动所有节点上面的Zookeeper。

    runRemoteCmd.sh "/home/hadoop/app/zookeeper/bin/zkServer.sh start" zookeeper

    查看所有节点上面的QuorumPeerMain进程是否启动。

    runRemoteCmd.sh "jps" zookeeper

    查看所有Zookeeper节点状态。

    runRemoteCmd.sh "/home/hadoop/app/zookeeper/bin/zkServer.sh status" zookeeper

    如果一个节点为leader,另四个节点为follower,则说明Zookeeper安装成功。

    (九)hadoop集群环境搭建

    将下载好的apache hadoop-2.6.0.tar.gz安装包,上传至hadoop11节点下的/home/hadoop/app目录下。

    [hadoop@hadoop11 app]$ rz	//将本地的hadoop-2.6.0.tar.gz安装包上传至当前目录
    [hadoop@hadoop11 app]$ ls
    hadoop-2.6.0.tar.gz jdk1.7.0_79  zookeeper
    [hadoop@hadoop11 app]$ tar zxvf hadoop-2.6.0.tar.gz		//解压
    [hadoop@hadoop11 app]$ ls
    hadoop-2.6.0 hadoop-2.6.0.tar.gz jdk1.7.0_79  zookeeper
    [hadoop@hadoop11 app]$ rm hadoop-2.6.0.tar.gz		//删除安装包
    [hadoop@hadoop11 app]$ mv hadoop-2.6.0 hadoop		//重命名
    		

    切换到/home/hadoop/app/hadoop/etc/hadoop/目录下,修改配置文件。

    [hadoop@hadoop11 app]$ cd /home/hadoop/app/hadoop/etc/hadoop/

    配置HDFS

    配置hadoop-env.sh

    [hadoop@hadoop11 hadoop]$ vi hadoop-env.sh
    export JAVA_HOME=/home/hadoop/app/jdk1.7.0_79
    		

    配置core-site.xml

    [hadoop@hadoop11 hadoop]$ vi core-site.xml
    <configuration>
    	<property>
    		<name>fs.defaultFS</name>
    		<value>hdfs://cluster1</value>
    	</property>
    	< 这里的值指的是默认的HDFS路径 ,取名为cluster1>
    	<property>
    		<name>hadoop.tmp.dir</name>
    		<value>/home/hadoop/data/tmp</value>
    	</property>
    	< hadoop的临时目录,如果需要配置多个目录,需要逗号隔开,data目录需要我们自己创建>
    	<property>
    		<name>ha.zookeeper.quorum</name>
    		<value>hadoop11:2181,hadoop12:2181,hadoop13:2181,hadoop14:2181,hadoop15:2181</value>
    	</property>
    	< 配置Zookeeper 管理HDFS>
    </configuration>
    		

    配置hdfs-site.xml

    [hadoop@hadoop11 hadoop]$ vi hdfs-site.xml
    <configuration>
    	<property>
    		<name>dfs.replication</name>
    		<value>3</value>
        </property>
    	< 数据块副本数为3>
    	<property>
    		<name>dfs.permissions</name>
    		<value>false</value>
    	</property>
    	<property>
    		<name>dfs.permissions.enabled</name>
    		<value>false</value>
    	</property>
    	< 权限默认配置为false>
    	<property>
    		<name>dfs.nameservices</name>
    		<value>cluster1</value>
    	</property>
    	< 命名空间,它的值与fs.defaultFS的值要对应,namenode高可用之后有两个namenode,cluster1是对外提供的统一入口>
    	<property>
    		<name>dfs.ha.namenodes.cluster1</name>
    		<value>hadoop11,hadoop12</value>
    	</property>
    	< 指定 nameService 是 cluster1 时的nameNode有哪些,这里的值也是逻辑名称,名字随便起,相互不重复即可>
    	<property>
    		<name>dfs.namenode.rpc-address.cluster1.hadoop11</name>
    		<value>hadoop11:9000</value>
    	</property>
    	< hadoop11 rpc地址>
    	<property>
    		<name>dfs.namenode.http-address.cluster1.hadoop11</name>
    		<value>hadoop11:50070</value>
    	</property>
    	< hadoop11 http地址>
    	<property>
    		<name>dfs.namenode.rpc-address.cluster1.hadoop12</name>
    		<value>hadoop12:9000</value>
    	</property>
    	< hadoop12 rpc地址>
    	<property>
    		<name>dfs.namenode.http-address.cluster1.hadoop12</name>
    		<value>hadoop12:50070</value>
    	</property>
    	< hadoop12 http地址>
    	<property>
    		<name>dfs.ha.automatic-failover.enabled</name>
    		<value>true</value>
        </property>
    	< 启动故障自动恢复>
    	<property>
    		<name>dfs.namenode.shared.edits.dir</name>
    		<value>qjournal://hadoop11:8485;hadoop12:8485;hadoop13:8485;hadoop14:8485;hadoop15:8485/cluster1</value>
    	</property>
    	< 指定journal>
    	<property>
    		<name>dfs.client.failover.proxy.provider.cluster1</name>
    		<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
        </property>
    	< 指定 cluster1 出故障时,哪个实现类负责执行故障切换>
        <property>
    		<name>dfs.journalnode.edits.dir</name>
    		<value>/home/hadoop/data/journaldata/jn</value>
        </property>
    	< 指定JournalNode集群在对nameNode的目录进行共享时,自己存储数据的磁盘路径 >
    	<property>
    		<name>dfs.ha.fencing.methods</name>
    		<value>shell(/bin/true)</value>
        </property>
        <property>
            <name>dfs.ha.fencing.ssh.private-key-files</name>
            <value>/home/hadoop/.ssh/id_rsa</value>
        </property>
    	<property>
            <name>dfs.ha.fencing.ssh.connect-timeout</name>
            <value>10000</value>
        </property>
    	< 脑裂默认配置>
        <property>
    		<name>dfs.namenode.handler.count</name>
    		<value>100</value>
        </property>
    </configuration>

    配置 slave

    [hadoop@hadoop11 hadoop]$ vi slaves
    hadoop13
    hadoop14
    hadoop15

    向所有节点分发hadoop安装包。

    [hadoop@hadoop11 app]$ deploy.sh hadoop /home/hadoop/app/ slave

    hdfs配置完毕后启动顺序

    1、启动所有节点上面的Zookeeper进程

    [hadoop@hadoop11 hadoop]$ runRemoteCmd.sh "/home/hadoop/app/zookeeper/bin/zkServer.sh start" zookeeper

    2、启动所有节点上面的journalnode进程

    [hadoop@hadoop11 hadoop]$ runRemoteCmd.sh "/home/hadoop/app/hadoop/sbin/hadoop-daemon.sh start journalnode" all

    3、首先在主节点上(比如,hadoop11)执行格式化

    [hadoop@hadoop11 hadoop]$ bin/hdfs namenode -format / /namenode 格式化
    [hadoop@hadoop11 hadoop]$ bin/hdfs zkfc -formatZK //格式化高可用
    [hadoop@hadoop11 hadoop]$bin/hdfs namenode //启动namenode
    		

    4、与此同时,需要在备节点(比如,hadoop12)上执行数据同步

    [hadoop@hadoop12 hadoop]$ bin/hdfs namenode -bootstrapStandby	//同步主节点和备节点之间的元数据
    		

    5、hadoop12同步完数据后,紧接着在hadoop11节点上,按下ctrl+c来结束namenode进程。 然后关闭所有节点上面的journalnode进程

    [hadoop@hadoop11 hadoop]$ runRemoteCmd.sh "/home/hadoop/app/hadoop/sbin/hadoop-daemon.sh stop journalnode" all	//然后停掉各节点的journalnode

    6、如果上面操作没有问题,我们可以一键启动hdfs所有相关进程

    [hadoop@hadoop11 hadoop]$ sbin/start-dfs.sh
    		

    启动成功之后,关闭其中一个namenode ,然后在启动namenode 观察切换的状况。

    7、验证是否启动成功

    通过web界面查看namenode启动情况。

    http://hadoop11:50070



    YARN安装配置

    配置mapred-site.xml

    [hadoop@hadoop11 hadoop]$ vi mapred-site.xml
    <configuration>
    	<property>
    		<name>mapreduce.framework.name</name>
    		<value>yarn</value>
    	</property>
    	<指定运行mapreduce的环境是Yarn,与hadoop1不同的地方>
    </configuration>
    		

    配置yarn-site.xml

    [hadoop@hadoop11 hadoop]$ vi yarn-site.xml
    <configuration>
    <property>
    	<name>yarn.resourcemanager.connect.retry-interval.ms</name>
    	<value>2000</value>
    </property>
    < 超时的周期>
    <property>
    	<name>yarn.resourcemanager.ha.enabled</name>
    	<value>true</value>
    </property>
    < 打开高可用>
    <property>
    	<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
    	<value>true</value>
    </property>
    <启动故障自动恢复>
    <property>
    	<name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
    	<value>true</value>
    </property>
    <failover使用内部的选举算法>
    <property>
    	<name>yarn.resourcemanager.cluster-id</name>
    	<value>yarn-rm-cluster</value>
    </property>
    <给yarn cluster 取个名字yarn-rm-cluster>
    <property>
    	<name>yarn.resourcemanager.ha.rm-ids</name>
    	<value>rm1,rm2</value>
    </property>
    <给ResourceManager 取个名字 rm1,rm2>
    <property>
    	<name>yarn.resourcemanager.hostname.rm1</name>
    	<value>hadoop11</value>
    </property>
    <配置ResourceManagerrm1hostname>
    <property>
    	<name>yarn.resourcemanager.hostname.rm2</name>
    	<value>hadoop12</value>
    </property>
    <配置ResourceManagerrm2hostname>
    <property>
    	<name>yarn.resourcemanager.recovery.enabled</name>
    	<value>true</value>
    </property>
    <启用resourcemanager 自动恢复>
    <property>
    	<name>yarn.resourcemanager.zk.state-store.address</name>
    	<value>hadoop11:2181,hadoop12:2181,hadoop13:2181,hadoop14:2181,hadoop15:2181</value>
    </property>
    <配置Zookeeper地址>
    <property>
    	<name>yarn.resourcemanager.zk-address</name>
    	<value>hadoop11:2181,hadoop12:2181,hadoop13:2181,hadoop14:2181,hadoop15:2181</value>
    </property>
    <配置Zookeeper地址>
    <property>
    	<name>yarn.resourcemanager.address.rm1</name>
    	<value>hadoop11:8032</value>
    </property>
    < rm1端口号>
    <property>
    	<name>yarn.resourcemanager.scheduler.address.rm1</name>
    	<value>hadoop11:8034</value>
    </property>
    < rm1调度器的端口号>
    <property>
    	<name>yarn.resourcemanager.webapp.address.rm1</name>
    	<value>hadoop11:8088</value>
    </property>
    < rm1webapp端口号>
    <property>
    	<name>yarn.resourcemanager.address.rm2</name>
    	<value>hadoop12:8032</value>
    </property>
    < rm2端口号>
    <property>
    	<name>yarn.resourcemanager.scheduler.address.rm2</name>
    	<value>hadoop12:8034</value>
    </property>
    < rm2调度器的端口号>
    <property>
    	<name>yarn.resourcemanager.webapp.address.rm2</name>
    	<value>hadoop12:8088</value>
    </property>
    < rm2webapp端口号>
    <property>
    	<name>yarn.nodemanager.aux-services</name>
    	<value>mapreduce_shuffle</value>
    </property>
    <property>
    	<name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
    	<value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>
    <执行MapReduce需要配置的shuffle过程>
    </configuration>
    		

    启动YARN

    1、在hadoop11节点上执行。

    [hadoop@hadoop11 hadoop]$ sbin/start-yarn.sh	
    		

    2、在hadoop12节点上面执行。

    [hadoop@hadoop11 hadoop]$ sbin/yarn-daemon.sh start resourcemanager
    		

    同时打开一下web界面。

    http://hadoop11:8088
    http://hadoop12:8088
    		

    关闭其中一个resourcemanager,然后再启动,看看这个过程的web界面变化。

    3、检查一下ResourceManager状态

    [hadoop@hadoop11 hadoop]$ bin/yarn rmadmin -getServiceState rm1
    [hadoop@hadoop11 hadoop]$ bin/yarn rmadmin -getServiceState rm2
    		

    4、Wordcount示例测试

    [hadoop@hadoop11 hadoop]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar wordcount /test/hadoop.txt /test/out/
  • 相关阅读:
    单例模式
    iOS宏定义
    WKWebView基本使用
    文件操作(NSFileManager)
    iOS 字典和NSData之间转换
    iOS 身份证,邮箱,手机号验证
    iOS自定义数字键盘
    iOS指纹识别
    JavaScript表单
    JavaScript数组操作方法集合(2)
  • 原文地址:https://www.cnblogs.com/braveym/p/7675824.html
Copyright © 2011-2022 走看看