zoukankan      html  css  js  c++  java
  • spark集群

    https://blog.csdn.net/boling_cavalry/article/details/86747258

    https://www.cnblogs.com/xuliangxing/p/7234014.html  

    第二个链接较为详细,但版本较旧

     

       注意spark 7077端口URL,如果hostname没配置正确,spark-submit会报错

    jps看了两个slaves是有worker进程的。

    spark安装完毕,启动hadoop集群:./sbin/./start-all.sh  

    jps可查看

    spark提交任务的三种的方法

    https://www.cnblogs.com/itboys/p/9998666.html

     虚拟机分配内存不足,解决方案参考:https://blog.csdn.net/u012848709/article/details/85425249

     

    最后终于跑完了,把输出结果get下来

    在master输入以下命令,最后三项为入参,9000为hadoop端口:

    /usr/cloud/spark-2.4.5-bin-hadoop2.7/bin/spark-submit
    --master spark://192.168.91.111:7077
    --class WordCount
    --executor-memory 512m
    --total-executor-cores 2
    /usr/cloud/spark-2.4.5-bin-hadoop2.7/jars/SparkWordCount-1.0-SNAPSHOT.jar
    192.168.91.111
    9000
    ihavaadream.txt

    =====================WordCount代码如下:======================

    import org.apache.commons.lang3.StringUtils;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    import scala.Tuple2;

    import java.text.SimpleDateFormat;
    import java.util.Arrays;
    import java.util.Date;
    import java.util.List;


    public class WordCount {

    private static final Logger logger = LoggerFactory.getLogger(WordCount.class);

    public static void main(String[] args) {
    if(null==args
    || args.length<3
    || StringUtils.isEmpty(args[0])
    || StringUtils.isEmpty(args[1])
    || StringUtils.isEmpty(args[2])) {
    logger.error("invalid params!");
    }


    String hdfsHost = args[0];
    String hdfsPort = args[1];
    String textFileName = args[2];

    SparkConf sparkConf = new SparkConf().setAppName("Spark WordCount Application (java)");

    JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);

    String hdfsBasePath = "hdfs://" + hdfsHost + ":" + hdfsPort;
    //文本文件的hdfs路径
    String inputPath = hdfsBasePath + "/input/" + textFileName;

    //输出结果文件的hdfs路径
    String outputPath = hdfsBasePath + "/output/"
    + new SimpleDateFormat("yyyyMMddHHmmss").format(new Date());

    logger.info("input path : {}", inputPath);
    logger.info("output path : {}", outputPath);

    logger.info("import text");
    //导入文件
    JavaRDD<String> textFile = javaSparkContext.textFile(inputPath);

    logger.info("do map operation");
    JavaPairRDD<String, Integer> counts = textFile
    //每一行都分割成单词,返回后组成一个大集合
    .flatMap(s -> Arrays.asList(s.split(" ")).iterator())
    //key是单词,value是1
    .mapToPair(word -> new Tuple2<>(word, 1))
    //基于key进行reduce,逻辑是将value累加
    .reduceByKey((a, b) -> a + b);

    logger.info("do convert");
    //先将key和value倒过来,再按照key排序
    JavaPairRDD<Integer, String> sorts = counts
    //key和value颠倒,生成新的map
    .mapToPair(tuple2 -> new Tuple2<>(tuple2._2(), tuple2._1()))
    //按照key倒排序
    .sortByKey(false);

    // logger.info("take top 10");
    //取前10个
    List<Tuple2<Integer, String>> top10 = sorts.collect();
    // List<Tuple2<Integer, String>> top10 = sorts.take(10);

    StringBuilder sbud = new StringBuilder("top 10 word : ");

    //打印出来
    for(Tuple2<Integer, String> tuple2 : top10){
    sbud.append(tuple2._2())
    .append(" ")
    .append(tuple2._1())
    .append(" ");
    }

    logger.info(sbud.toString());

    logger.info("merge and save as file");
    //分区合并成一个,再导出为一个txt保存在hdfs
    javaSparkContext.parallelize(top10).coalesce(1).saveAsTextFile(outputPath);


    logger.info("close context");
    //关闭context
    javaSparkContext.close();
    }
    }

     done!

  • 相关阅读:
    Android平板电脑开发实战详解和典型案例
    UG NX10.0技术大全(不附光盘)
    SolidWorks 2018中文版机械设计应用大全
    1192.回文字符串
    1193.矩阵转置
    1195.最长&最短文本
    1194.八进制
    1196.成绩排序
    1197.奇偶检验
    1199.找位置
  • 原文地址:https://www.cnblogs.com/breakingbrad/p/12343889.html
Copyright © 2011-2022 走看看