STM32——————通用定时器基本定时功能
1. STM32的Timer简介
STM32中一共有11个定时器,其中2个高级控制定时器,4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。其中系统嘀嗒定时器是前文中所描述的SysTick,看门狗定时器以后再详细研究。今天主要是研究剩下的8个定时器。
定时器 |
计数器分辨率 |
计数器类型 |
预分频系数 |
产生DMA请求 |
捕获/比较通道 |
互补输出 |
TIM1 TIM8 |
16位 |
向上,向下,向上/向下 |
1-65536之间的任意数 |
可以 |
4 |
有 |
TIM2 TIM3 TIM4 TIM5 |
16位 |
向上,向下,向上/向下 |
1-65536之间的任意数 |
可以 |
4 |
没有 |
TIM6 TIM7 |
16位 |
向上 |
1-65536之间的任意数 |
可以 |
0 |
没有 |
其中TIM1和TIM8是能够产生3对PWM互补输出的高级登时其,常用于三相电机的驱动,时钟由APB2的输出产生。TIM2-TIM5是普通定时器,TIM6和TIM7是基本定时器,其时钟由APB1输出产生。由于STM32的TIMER功能太复杂了,所以只能一点一点的学习。因此今天就从最简单的开始学习起,也就是TIM2-TIM5普通定时器的定时功能。
2. 普通定时器TIM2-TIM5
2.1 时钟来源
计数器时钟可以由下列时钟源提供:
·内部时钟(CK_INT)
·外部时钟模式1:外部输入脚(TIx)
·外部时钟模式2:外部触发输入(ETR)
·内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。
由于今天的学习是最基本的定时功能,所以采用内部时钟。TIM2-TIM5的时钟不是直接来自于APB1,而是来自于输入为APB1的一个倍频器。这个倍频器的作用是:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作用,定时器的时钟频率等于APB1的频率的2倍。APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。通过倍频器给定时器时钟的好处是:APB1不但要给TIM2-TIM5提供时钟,还要为其他的外设提供时钟;设置这个倍频器可以保证在其他外设使用较低时钟频率时,TIM2-TIM5仍然可以得到较高的时钟频率。
2.2 计数器模式
TIM2-TIM5可以由向上计数、向下计数、向上向下双向计数。向上计数模式中,计数器从0计数到自动加载值(TIMx_ARR计数器内容),然后重新从0开始计数并且产生一个计数器溢出事件。在向下模式中,计数器从自动装入的值(TIMx_ARR)开始向下计数到0,然后从自动装入的值重新开始,并产生一个计数器向下溢出事件。而中央对齐模式(向上/向下计数)是计数器从0开始计数到自动装入的值-1,产生一个计数器溢出事件,然后向下计数到1并且产生一个计数器溢出事件;然后再从0开始重新计数。
2.3 编程步骤
1. 配置系统时钟;
2. 配置NVIC;
3. 配置GPIO;
4. 配置TIMER;
其中,前3项在前面的笔记中已经给出,在此就不再赘述了。第4项配置TIMER有如下配置:
(1) 利用TIM_DeInit()函数将Timer设置为默认缺省值;
(2) TIM_InternalClockConfig()选择TIMx来设置内部时钟源;
(3) TIM_Perscaler来设置预分频系数;
(4) TIM_ClockDivision来设置时钟分割;
(5) TIM_CounterMode来设置计数器模式;
(6) TIM_Period来设置自动装入的值
(7) TIM_ARRPerloadConfig()来设置是否使用预装载缓冲器
(8) TIM_ITConfig()来开启TIMx的中断
其中(3)-(6)步骤中的参数由TIM_TimerBaseInitTypeDef结构体给出。步骤(3)中的预分频系数用来确定TIMx所使用的时钟频率,具体计算方法为:CK_INT/(TIM_Perscaler+1)。CK_INT是内部时钟源的频率,是根据2.1中所描述的APB1的倍频器送出的时钟,TIM_Perscaler是用户设定的预分频系数,其值范围是从0 – 65535。
步骤(4)中的时钟分割定义的是在定时器时钟频率(CK_INT)与数字滤波器(ETR,TIx)使用的采样频率之间的分频比例。TIM_ClockDivision的参数如下表:
TIM_ClockDivision |
描述 |
二进制值 |
TIM_CKD_DIV1 |
tDTS = Tck_tim |
0x00 |
TIM_CKD_DIV2 |
tDTS = 2 * Tck_tim |
0x01 |
TIM_CKD_DIV4 |
tDTS = 4 * Tck_tim |
0x10 |
数字滤波器(ETR,TIx)是为了将ETR进来的分频后的信号滤波,保证通过信号频率不超过某个限定。
步骤(7)中需要禁止使用预装载缓冲器。当预装载缓冲器被禁止时,写入自动装入的值(TIMx_ARR)的数值会直接传送到对应的影子寄存器;如果使能预加载寄存器,则写入ARR的数值会在更新事件时,才会从预加载寄存器传送到对应的影子寄存器。
ARM中,有的逻辑寄存器在物理上对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存器,称为shadow register(影子寄存器);设计preload register和shadow register的好处是,所有真正需要起作用的寄存器(shadow register)可以在同一个时间(发生更新事件时)被更新为所对应的preload register的内容,这样可以保证多个通道的操作能够准确地同步。如果没有shadow register,或者preload register和shadow register是直通的,即软件更新preload register时,同时更新了shadow register,因为软件不可能在一个相同的时刻同时更新多个寄存器,结果造成多个通道的时序不能同步,如果再加上其它因素(例如中断),多个通道的时序关系有可能是不可预知的。
3. 程序源代码
本例实现的是通过TIM3的定时功能,使得LED0 0.5s闪烁,LED0 1s闪烁。
- 为定时器配置函数
#include "timer.h" #include "led.h" void TIM3_NVIC_Init(void) //定时器中断初始化函数 { NVIC_InitTypeDef NVIC_InitStrue; NVIC_InitStrue.NVIC_IRQChannel=TIM3_IRQn; //定时器3的中断 NVIC_InitStrue.NVIC_IRQChannelPreemptionPriority=0; //优先级为0,最高 NVIC_InitStrue.NVIC_IRQChannelSubPriority=3; //子优先级为3 NVIC_InitStrue.NVIC_IRQChannelCmd=ENABLE; //中断使能 NVIC_Init(&NVIC_InitStrue); } void TIM3_Init(u16 arr,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStrure; TIM_DeInit(TIM3); //定时器3时钟复位 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE); //定时器3时钟使能 TIM_TimeBaseInitStrure.TIM_Prescaler=psc; //预分频系数 TIM_TimeBaseInitStrure.TIM_CounterMode=TIM_CounterMode_Up; //计数器向上溢出 TIM_TimeBaseInitStrure.TIM_Period=arr; //设置自动重装载值 TIM_TimeBaseInitStrure.TIM_ClockDivision=TIM_CKD_DIV1; //时钟的分频因子,起到了一点点的延时作用,一般设为TIM_CKD_DIV1 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStrure); TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE); //允许更新中断,即允许在溢出时中断 TIM3_NVIC_Init(); //定时器中断初始化 TIM_Cmd(TIM3,ENABLE); //启动定时器3 } void TIM3_IRQHandler() //中断服务程序 { if(TIM_GetITStatus(TIM3,TIM_CounterMode_Up)==SET) //首先判断一定时器3是否发生向上溢出中断 { LED0=~LED0; //LED0显示翻转 TIM_ClearITPendingBit(TIM3,TIM_CounterMode_Up); //中断发生完毕后清除标志位,为下次中断做准备。 } }
- 为主函数
#include "sys.h" #include "led.h" #include "delay.h" #include "timer.h" /************************************************ 1、将各个可会用到的功能先运行相应的初始化函数 2、while循环等待中断发生 ************************************************/ int main(void) { delay_init(); LED_Init(); TIM3_Init(4999,7199); //设置500ms产生一次中断,公式为:溢出时间Tout=(arr+1)(psc+1)/Tclk //Tclk为通用定时器的时钟,如果APB1没有分频,则就为系统时钟,72MHZ while(1) { LED1=~LED1; //LED1的状态每隔500ms翻转一次 delay_ms(1000); } }