zoukankan      html  css  js  c++  java
  • 多项分布

    多项分布定义

    某随机实验如果有(k)个可能结局(A_1, A_2, cdots,A_k),分别将他们的出现次数记为随机变量(X_1,X_2,cdots,X_k),它们的概率分布分别是(p_1,p_2,cdots,p_k),那么在(n)次采样的总结果中,(A_1)出现(n_1)次、(A_2)出现(n_2)次、…、(A_k)出现(n_k)次的这种事件的出现概率(P)有下面公式:

    (k)个可能的结果 (A_1) (A_2) (cdots) (A_k)
    每个结果出现的次数 (X_1) (X_2) (cdots) (X_k)
    每个结果可能的概率 (p_1) (p_2) (cdots) (p_k)
    采样(n)
    (n_1) (n_2) (cdots) (n_k) (sum_{i=1}^n n_i = n)
    (x_1) (x_2) (cdots) (x_k) (sum_{i=1}^n x_i = n)

    [m{P}(X_1=n_1,X_2=n_2,cdots,X_k=n_k)=frac{n!}{n_1!n_2!cdots n_k!}p_1^{n_1}p_2^{n_2}cdots p_k^{n_k} ]

    参考

    1. 多项分布
  • 相关阅读:
    NYOJ458
    NYOJ67
    NYOJ105
    NYOJ1071
    NYOJ463
    C语言练字用小软件 — Practise_Calligraphy_1.0(ANSI)
    NYOJ276
    NYOJ455
    NYOJ74
    Jzoj4458 密钥破解——Pollard-rho
  • 原文地址:https://www.cnblogs.com/brightyuxl/p/11391075.html
Copyright © 2011-2022 走看看