zoukankan      html  css  js  c++  java
  • TorchVision: PyTorch的图像处理库+工具集


    官网入门教程 & API

    这个包中有四个大类:

    • torchvision.datasets
    • torchvision.models
    • torchvision.transforms
    • torchvision.utils

    1. torchvision.datasets

    • CelebA
    • CIFAR
    • Cityscapes
    • COCO
    • DatasetFolder
    • EMNIST
    • FakeData
    • Fashion-MNIST
    • Flickr
    • HMDB51
    • ImageFolder
    • ImageNet
    • Kinetics-400
    • KMNIST
    • LSUN
    • MNIST
    • Omniglot
    • PhotoTour
    • Places365
    • QMNIST
    • SBD
    • SBU
    • STL10
    • SVHN
    • UCF101
    • USPS
    • VOC
    torch.utils.data.DataLoader(coco_cap, batch_size=args.batchSize, shuffle=True, num_workers=args.nThreads)
    

    2. torchvision.io

    • Video
    • Fine-grained video API
    • Image

    3. torchvision.models

    • Classification
      • AlexNet
      • VGG
      • ResNet
      • SqueezeNet
      • DenseNet
      • Inception v3
      • GoogLeNet
      • ShuffleNet v2
      • MobileNet v2
      • ResNeXt
      • Wide ResNet
      • MNASNet
    • Semantic Segmentation
      • FCN ResNet50
      • ResNet101
      • DeepLabV3 ResNet50
      • ResNet101
    • Object Detection, Instance Segmentation and Person Keypoint Detection
    • Faster R-CNN ResNet-50 FPN
    • Mask R-CNN ResNet-50 FPN
    • Video classification

    载入模型示例

    import torchvision.models as models
    
    resnet18 = models.resnet18()
    alexnet = models.alexnet()
    vgg16 = models.vgg16()
    squeezenet = models.squeezenet1_0()
    densenet = models.densenet161()
    inception = models.inception_v3()
    googlenet = models.googlenet()
    shufflenet = models.shufflenet_v2_x1_0()
    mobilenet = models.mobilenet_v2()
    resnext50_32x4d = models.resnext50_32x4d()
    wide_resnet50_2 = models.wide_resnet50_2()
    mnasnet = models.mnasnet1_0()
    

    你也可以选择使用 pretrained=True 参数来加载预训练参数。

    以下罗列了常见的几种模型的 Top-1/5 error :ImageNet 1-crop error rates (224x224)

    Network Top-1 error Top-5 error
    AlexNet 43.45 20.91
    VGG-16 28.41 9.62
    VGG-19 27.62 9.12
    VGG-16 with batch normalization 26.63 8.50
    VGG-19 with batch normalization 25.76 8.15
    ResNet-18 30.24 10.92
    ResNet-34 26.70 8.58
    ResNet-50 23.85 7.13
    ResNet-101 22.63 6.44
    ResNet-152 21.69 5.94
    Densenet-161 22.35 6.20
    MobileNet V2 28.12 9.71
    ResNeXt-50-32x4d 22.38 6.30
    ResNeXt-101-32x8d 20.69 5.47
    Wide ResNet-50-2 21.49 5.91
    Wide ResNet-101-2 21.16 5.72

    4. torchvision.transforms

    • Scriptable transforms
    • Compositions of transforms
    • Transforms on PIL Image and torch.*Tensor
    • Transforms on PIL Image only
    • Transforms on torch.*Tensor only
    • Conversion Transforms
    • Generic Transforms
    • Functional Transforms

    4.1. 针对 PIL.Image 的图像处理

    • Scale(size, interpolation=Image.BILINEAR)
    • CenterCrop(size) - center-crops the image to the given size
    • RandomCrop(size, padding=0)
    • RandomHorizontalFlip()
    • RandomSizedCrop(size, interpolation=Image.BILINEAR)
    • Pad(padding, fill=0)

    4.2. 针对张量 torch.*Tensor 的操作

    • Normalize(mean, std)

    4.3. 数据格式转换操作

    • ToTensor()

    4.4. 其他操作

    例如:

    transforms.Lambda(lambda x: x.add(10))  # 将每个像素值加10
    
  • 相关阅读:
    编写你自己的单点登录(SSO)服务
    SignalR + KnockoutJS + ASP.NET MVC4 实现井字游戏
    Quartz使用总结
    Quartz.Net入门
    ASP.NET批量下载文件的方法
    Asp.Net文件的上传和下载
    AOP实践—ASP.NET MVC5 使用Filter过滤Action参数防止sql注入,让你代码安全简洁
    ASP.NET MVC4中的异步控制器
    Mybatis表关联一对多、多对一、多对多
    Xamarin android使用Sqlite做本地存储数据库
  • 原文地址:https://www.cnblogs.com/brt2/p/14417554.html
Copyright © 2011-2022 走看看