zoukankan      html  css  js  c++  java
  • POJ 1679 The Unique MST 推断最小生成树是否唯一

    The Unique MST
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 22715   Accepted: 8055

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique. 

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
    1. V' = V. 
    2. T is connected and acyclic. 

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!


    #include <iostream>
    #include <stdio.h>
    #include <string>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #define N 10090
    using namespace std;
    
    struct Node
    {
        int a,b,c;
        bool same,used,del;
    }f[N];
    int n,m;
    int fa[N];
    
    int findfa(int x)
    {
        if(x!=fa[x])
        fa[x]=findfa(fa[x]);
    
        return fa[x];
    }
    
    void init()
    {
        for(int i=0;i<200;i++)
        fa[i]=i;
    }
    
    int cmp(Node a,Node b)
    {
        return a.c<b.c;
    }
    
    bool first;
    
    void make_same(int m)
    {
        for(int i=1;i<m;i++)
        if(f[i].c==f[i-1].c)
        f[i-1].same=true;
    }
    
    int kruscal(int m)
    {
        int ans=0;
        for(int i=0;i<m;i++)
        {
            if(f[i].del)continue;
    
            int x=findfa(f[i].a);
            int y=findfa(f[i].b);
    
            if(x==y)
            continue;
            else
            {
                fa[x]=y;
    
                ans+=f[i].c;
                if(first)
                f[i].used=true;
    
            }
        }
        return ans;
    }
    
    int main()
    {
        int ca=1;
        scanf("%d",&ca);
    
        while(ca--)
        {
            scanf("%d %d",&n,&m);
            for(int i=0;i<m;i++)
            {
                scanf("%d %d %d",&f[i].a,&f[i].b,&f[i].c);
                f[i].del=false;f[i].same=false;f[i].used=false;
            }
    
            sort(f,f+m,cmp);
    
            first=true;
            init();
    
            int ans1=kruscal(m);
            first=false;
    
            make_same(m);
    
            int flag=0;
    
            for(int i=0;i<m;i++)
            {
                if(f[i].used && f[i].same)//used表示在第一次求出的最小生成树中加入过的边
                {//same表示在存在和已加入边权值同样的边,此时标记删除该边在推断是否ans相等
    
                    f[i].del=true;
                    init();
    
                    int ans2=kruscal(m);
    
                    //cout<<"ans2="<<ans2<<endl;
                    if(ans1==ans2)
                    {
                        puts("Not Unique!");
                        flag=1;
                        break;
                    }
                    f[i].del=false;
                }
            }
    
            if(flag==0)
            printf("%d
    ",ans1);
    
        }
    
        return 0;
    }
    
    
    






  • 相关阅读:
    WRF rsl.out文件研究
    ERA-Interim 的变量TCW和VIWV可降水量
    sudo apt update 没有 Release 文件
    线性斜压模式LBM学习&安装实录
    PGI 用户手册之 Site-Specific Customization of the Compilers
    ERA5气压层数据驱动WRF的一些问题
    OpenMP fortran 学习
    crontab计划运行shell脚本,调用ncl执行失败
    CDO学习2 CDO 入门教程Tutorial
    guide, manual, tutorial之间的区别
  • 原文地址:https://www.cnblogs.com/brucemengbm/p/6844456.html
Copyright © 2011-2022 走看看