zoukankan      html  css  js  c++  java
  • HDU 1506 Largest Rectangle in a Histogram

    Problem Description
    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.
     

    Input
    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.
     

    Output
    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.
     

    Sample Input
    7 2 1 4 5 1 3 3 4 1000 1000 1000 1000 0
     

    Sample Output
    8 4000
     

    Source
     
    事实上也不难理解,策略:对于每个点都要记录当前的高度a[i],然后就是左右延伸比当前高度a[i]高的
    最远位子,即l[i],r[i];
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<limits.h>
    using namespace std;
    const int maxn=100000+100;
    long long a[maxn],n;
    long long l[maxn],r[maxn];//r[i]记录比当前点大右边的位子,l[i]记录比当前点大的左边的位子。
    int main()
    {
        while(~scanf("%I64d",&n)&&n)
        {
            for(int i=1;i<=n;i++)
               scanf("%I64d",&a[i]);
            l[1]=1;
            r[n]=n;
            for(int i=2;i<=n;i++)
            {
                int t=i;
                while(t>1&&a[i]<=a[t-1])
                    t=l[t-1];
                l[i]=t;
            }
            for(int i=n-1;i>=1;i--)
            {
                int t=i;
                while(t<n&&a[i]<=a[t+1])
                    t=r[t+1];
                r[i]=t;
            }
            long long ans=-1;
            for(int i=1;i<=n;i++)
            {
                if((r[i]-l[i]+1)*a[i]>ans)
                    ans=(r[i]-l[i]+1)*a[i];
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    


  • 相关阅读:
    oarcle 提取数字函数
    通用XML操作类(微型本地xml数据库)
    linux内核模块Makefile的解析
    开源的许可证GPL、LGPL、BSD、Apache 2.0的通俗解释
    弹性布局
    CSS基础知识
    HTML5基本标签
    VS2008开发Windows Mobile6环境搭建及模拟器联网问题图解
    .Silverlight Binding (One Time,One Way,Two Way)
    WCF Service中HttpContext.Current为null的解决办法
  • 原文地址:https://www.cnblogs.com/brucemengbm/p/6886078.html
Copyright © 2011-2022 走看看