zoukankan      html  css  js  c++  java
  • COT2

    COT2 - Count on a tree II

    You are given a tree with N nodes. The tree nodes are numbered from 1 to N. Each node has an integer weight.

    We will ask you to perform the following operation:

    u v : ask for how many different integers that represent the weight of nodes there are on the path from u to v.


    Input
    In the first line there are two integers N and M. (N <= 40000, M <= 100000)

    In the second line there are N integers. The i-th integer denotes the weight of the i-th node.

    In the next N-1 lines, each line contains two integers u v, which describes an edge (u, v).

    In the next M lines, each line contains two integers u v, which means an operation asking for how many different integers that represent the weight of nodes there are on the path from u to v.


    Output
    For each operation, print its result.


    Example
    Input:

    8 2
    105 2 9 3 8 5 7 7
    1 2
    1 3
    1 4
    3 5
    3 6
    3 7
    4 8
    2 5
    7 8

    Output:

    4
    4

    思路:树上莫队的模板题
    LCA用tarjan算法来找,可以变成DFS以后的序列,然后再用莫队算法的思路。

    #include <bits/stdc++.h>
    
    using namespace std;
    int const SIZE=40100;
    int const BLOCK_SIZE=300;
    
    //利用hash记录LCA
    struct Hash{
        typedef struct __t{int a;int b;__t(int aa=0,int bb=0):a(aa),b(bb){}}key_t;
        typedef int value_t;
        enum{MOD=0x1fffff};
        key_t keys[MOD+1];
        value_t values[MOD+1];
    
        int head[MOD+1];
        int next[MOD+1];
        int toUsed;
    
        Hash():toUsed(0){fill(head,head+MOD+1,-1);}
    
        void clear(){fill(head,head+MOD+1,-1);toUsed=0;}
    
        int getKey(key_t const&key)const {
            int ret=17;
            ret=ret*37+key.a;
            ret=ret*37+key.b;
            return ret;
        }
    
        void insert(key_t const&key,value_t const&value){
            int k = getKey(key) & MOD;
            keys[toUsed] = key;
            values[toUsed] = value;
            next[toUsed] = head[k];
            head[k] = toUsed++;
        }
    
        value_t find(key_t const&key)const{
            int k = getKey(key) & MOD;
            for(int i=head[k];i!=-1;i=next[i]){
                if ( keys[i].a == key.a && keys[i].b == key.b ) return values[i];
            }
            return 0;
        }
    
        void disp(FILE*fp)const{
            for(int i=1;i<toUsed;++i){
                fprintf(fp,"(%d %d): %d
    ",keys[i].a,keys[i].b,values[i]);
            }
        }
    }Lca;
    
    struct dege_t{
        int to;
        int next;
    }Edge[SIZE<<1];
    
    int ECnt=1;
    int Vertex[SIZE]={0};
    
    inline void makeEdge(int a,int b)
    {
        Edge[ECnt].to=b;
        Edge[ECnt].next=Vertex[a];
        Vertex[a]=ECnt++;
    
        Edge[ECnt].to=a;
        Edge[ECnt].next=Vertex[b];
        Vertex[b]=ECnt++;
    }
    
    //生成DFS序
    int InIdx[SIZE],OutIdx[SIZE];
    int NewIdx[SIZE<<1];
    int NCnt = 1;
    void dfs(int node,int parent){
        NewIdx[NCnt] = node;
        InIdx[node] = NCnt++;
        for(int next=Vertex[node];next;next=Edge[next].next){
            int to = Edge[next].to;
            if ( to != parent ) dfs(to,node);
        }
        NewIdx[NCnt] = node;
        OutIdx[node] = NCnt++;
    }
    
    //Tarjan算法中用到的并查集
    int Father[SIZE];
    int find(int x){return x==Father[x]?x:Father[x]=find(Father[x]);}
    
    bool Flag[SIZE] = {false};
    vector<vector<int> > Questions(SIZE,vector<int>());
    
    
    //Tarjan算法一次性求出所有的LCA
    void Tarjan(int u,int parent){
        Father[u] = u;
        Flag[u] = true;
    
        for(int next=Vertex[u];next;next=Edge[next].next){
            int to = Edge[next].to;
            if ( to == parent ) continue;
            Tarjan(to,u);
            Father[to] = u;
        }
    
        vector<int>&vec=Questions[u];
        for(vector<int>::iterator it=vec.begin();it!=vec.end();++it){
            int v = *it;
            if ( Flag[v] ){
                int r = find(v);
                Lca.insert(Hash::key_t(u,v),r);
                Lca.insert(Hash::key_t(v,u),r);
            }
        }
    }
    
    struct _t{
        int s,e;
        int idx;
        int lca;
    };
    
    bool operator  < (_t const&lhs,_t const&rhs){
        int ln = lhs.s / BLOCK_SIZE;
        int rn = rhs.s / BLOCK_SIZE;
        return ln < rn || ( ln == rn && lhs.e < rhs.e );
    }
    int N,M;
    int A[SIZE];
    _t B[100000];
    
    //将原树上的路径问题转化为DFS序中的区间问题
    inline void mkQuestion(int a,int b,int idx){
        int lca = Lca.find(Hash::key_t(a,b));
        if ( lca == a || lca == b ){
            int t = lca == a ? b : a;
            B[idx].s = OutIdx[t];
            B[idx].e = OutIdx[lca];
            B[idx].lca = 0;
        }else{
            B[idx].lca = lca;
            if ( OutIdx[a] < InIdx[b] ) B[idx].s = OutIdx[a], B[idx].e = InIdx[b];
            else B[idx].s = OutIdx[b], B[idx].e = InIdx[a];
        }
    }
    
    int MoAns;
    int Ans[100000],Cnt[SIZE];
    inline void insert(int n){
        if ( 1 == ++Cnt[n] ) ++MoAns;
    }
    
    inline void remove(int n){
        if ( 0 == --Cnt[n] ) --MoAns;
    }
    
    void MoOp(int idx){
        int k = NewIdx[idx];
        if ( Flag[k] ) remove(A[k]);
        else insert(A[k]);
        Flag[k] ^= 1;
    }
    void Mo(){
        sort(B,B+M);
    
        fill(Flag,Flag+N+1,false);
        int curLeft = 1;
        int curRight = 0;
        MoAns = 0;
    
        for(int i=0;i<M;++i){
            while( curRight < B[i].e  ) MoOp(++curRight);
            while( curLeft > B[i].s ) MoOp(--curLeft);
            while( curRight > B[i].e ) MoOp(curRight--);
            while( curLeft < B[i].s ) MoOp(curLeft++);
            if ( B[i].lca ){
                Ans[B[i].idx] = MoAns + ( 0 == Cnt[A[B[i].lca]] ? 1 : 0 );
            }else{
                Ans[B[i].idx] = MoAns;
            }
    
        }
    }
    void init(int n){
        ECnt = NCnt = 1;
        fill(Vertex,Vertex+n+1,0);
        fill(Flag,Flag+n+1,false);
    }
    int getUnsigned(){
        char ch = getchar();
        while( ch > '9' || ch < '0' ) ch = getchar();
    
        int ret = 0;
        do ret = ret * 10 + (int)(ch-'0');while( '0' <= (ch=getchar()) && ch <= '9' );
        return ret;
    }
    
    int W[SIZE];
    bool read(){
        if ( EOF == scanf("%d",&N) ) return false;
        M = getUnsigned();
    
        init(N);
    
        //权值输入并离散化
        for(int i=1;i<=N;++i) W[i] = A[i] = getUnsigned();
        sort(W+1,W+N+1);
        int* pn = unique(W+1,W+N+1);
        for(int i=1;i<=N;++i) A[i] = lower_bound(W+1,pn,A[i]) - W;
    
        int a,b;
        for(int i=1;i<N;++i){
            a = getUnsigned();
            b = getUnsigned();
            makeEdge(a,b);
        }
        dfs(1,0);
    
        for(int i=0;i<M;++i){
            B[i].s = getUnsigned();
            B[i].e = getUnsigned();
            B[i].idx = i;
            Questions[B[i].s].push_back(B[i].e);
            Questions[B[i].e].push_back(B[i].s);
        }
    
        Tarjan(1,0);
        for(int i=0;i<M;++i) mkQuestion(B[i].s,B[i].e,i);
    
        return true;
    }
    int main(){
        //freopen("1.txt","r",stdin);
        while ( read() ){
            Mo();
            for(int i=0;i<M;++i)printf("%d
    ",Ans[i]);
        }
        return 0;
    }
    
    
    
    
    
  • 相关阅读:
    开源 免费 java CMS FreeCMS功能说明单位管理
    用Spring让Java Mail支持简化邮件发送
    Java Mail简化邮件发送+附件发送(源码奉上)
    java common practice to rethrow exceptions
    浅谈Java内存泄露
    全局样式
    求最大公约数和最小公倍数
    求所有水仙花数
    indexedDB数据库的使用
    fileReader读取文件
  • 原文地址:https://www.cnblogs.com/bryce1010/p/9386955.html
Copyright © 2011-2022 走看看