zoukankan      html  css  js  c++  java
  • 组合游戏

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧.

    必胜点和必败点的概念
           P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
           N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
    必胜点和必败点的性质
            1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
            2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
            3、无论如何操作,必败点P 都只能进入 必胜点 N。
    我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以hdu 1847 Good Luck in CET-4 Everybody!为例:
    当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了
    当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点
    当 n = 2 时,也是一次就可以拿完,故此时为必胜点
    当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。
    以此类推,最后你就可以得到;
          n    :   0    1    2    3    4   5    6 ...
    position:  P    N   N    P   N   N   P ...
    你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。
    现在给你一个稍微复杂一点点的: hdu 2147 kiki's game

            现在我们就来介绍今天的主角吧。组合游戏的和通常是很复杂的,但是有一种新工具,可以使组合问题变得简单————SG函数和SG定理。

    Sprague-Grundy定理(SG定理):

            游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。不知道Nim游戏的请移步:这里

    SG函数:

            首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

            对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。

    【实例】取石子问题

    有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?

    SG[0]=0,f[]={1,3,4},

    x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;

    x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;

    x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;

    x=4 时,可以取走4-  f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;

    x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;

    以此类推.....

       x        0  1  2  3  4  5  6  7  8....

    SG[x]    0  1  0  1  2  3  2  0  1....

    由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:

    1、使用 数组f 将 可改变当前状态 的方式记录下来。

    2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。

    3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。

    4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。

    代码实现如下:

    //f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理  
    //SG[]:0~n的SG函数值  
    //S[]:为x后继状态的集合  
    int f[N],SG[MAXN],S[MAXN];  
    void  getSG(int n){  
        int i,j;  
        memset(SG,0,sizeof(SG));  
        //因为SG[0]始终等于0,所以i从1开始  
        for(i = 1; i <= n; i++){  
            //每一次都要将上一状态 的 后继集合 重置  
            memset(S,0,sizeof(S));  
            for(j = 0; f[j] <= i && j <= N; j++)  
                S[SG[i-f[j]]] = 1;  //将后继状态的SG函数值进行标记  
            for(j = 0;; j++) if(!S[j]){   //查询当前后继状态SG值中最小的非零值  
                SG[i] = j;  
                break;  
            }  
        }  
    }  

    现在我们来一个实战演练(题目链接):点击打开链接

           只要按照上面的思路,解决这个就是分分钟的问题。

    代码如下:

    #include <iostream>
    #include<string.h>
    using namespace std;
    
    const int MAXN=1010;
    const int N=20;
    
    //f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
    //SG[]:0~n的SG函数值
    //S[]:为x后继状态的集合
    int f[N],SG[MAXN],S[MAXN];
    void  getSG(int n){
        int i,j;
        memset(SG,0,sizeof(SG));
        //因为SG[0]始终等于0,所以i从1开始
        for(i = 1; i <= n; i++){
            //每一次都要将上一状态 的 后继集合 重置
            memset(S,0,sizeof(S));
            for(j = 0; f[j] <= i && j <= N; j++)
                S[SG[i-f[j]]] = 1;  //将后继状态的SG函数值进行标记
            for(j = 0;; j++) if(!S[j]){   //查询当前后继状态SG值中最小的非零值
                SG[i] = j;
                break;
            }
        }
    }
    int main()
    {
        //cout << "Hello world!" << endl;
        int n,m,k;
        f[0]=1;
        f[1]=1;
        for(int i=2;i<=16;i++)
        {
            f[i]=f[i-1]+f[i-2];
        }
        getSG(1000);
        for(int i=0;i<100;i++)
        {
            cout<<SG[i]<<" ";
        }
        cout<<endl;
        while(cin>>n>>m>>k&&n!=0&&m!=0&&k!=0)
        {
    
            if(SG[n]^SG[m]^SG[k])
                cout<<"Fibo"<<endl;
            else
                cout<<"Nacci"<<endl;
        }
        return 0;
    }
    

    大家是不是还没有过瘾,那我就在给大家附上一些组合博弈的题目:

    POJ 2234 Matches Game
    HOJ 4388 Stone Game II

    POJ 2975 Nim
    HOJ 1367 A Stone Game
    POJ 2505 A multiplication game
    ZJU 3057 beans game
    POJ 1067 取石子游戏
    POJ 2484 A Funny Game
    POJ 2425 A Chess Game
    POJ 2960 S-Nim
    POJ 1704 Georgia and Bob
    POJ 1740 A New Stone Game
    POJ 2068 Nim
    POJ 3480 John
    POJ 2348 Euclid's Game
    HOJ 2645 WNim
    POJ 3710 Christmas Game 
    POJ 3533 Light Switching Game

    (如有错误,欢迎指正,转载注明出处)



  • 相关阅读:
    如何使员工能力和收入相匹配?
    微软Windows Phone 7新特性详解
    微软MSDN中文网络广播(Webcast)——Visual Studio 2010 & ALM应用实践系列课程预告(2011)
    博客园开发征途新书《我也能做CTO之.程序员职业规划》出版
    架构抉择:享用微软SQL云平台就像吃烤鸭
    微软北京.NET俱乐部免费活动(2010年7月18日)–Visual Studio 2010 敏捷开发与云计算Azure
    WCF与Hprose在微软云计算平台Azure上的对决
    在Visual Studio 2010中实现数据驱动Coded UI Tests
    基于微软Dryad分布式并行计算平台云技术的研究
    微软Visual Studio 2010架构设计功能应用
  • 原文地址:https://www.cnblogs.com/bryce1010/p/9387075.html
Copyright © 2011-2022 走看看