zoukankan      html  css  js  c++  java
  • hdu6198 number number number(递推公式黑科技)

    number number number

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 192    Accepted Submission(s): 126


    Problem Description
    We define a sequence F:

     F0=0,F1=1;
     Fn=Fn1+Fn2 (n2).

    Give you an integer k, if a positive number n can be expressed by
    n=Fa1+Fa2+...+Fak where 0a1a2ak, this positive number is mjfgood. Otherwise, this positive number is mjfbad.
    Now, give you an integer k, you task is to find the minimal positive mjfbad number.
    The answer may be too large. Please print the answer modulo 998244353.
     

    Input
    There are about 500 test cases, end up with EOF.
    Each test case includes an integer k which is described above. (1k109)
     

    Output
    For each case, output the minimal mjfbad number mod 998244353.
     

    Sample Input
    1
     

    Sample Output
    4
     

    Source
     

    Recommend
    liuyiding   |   We have carefully selected several similar problems for you:  6205 6204 6203 6202 6201 
     

    Statistic | Submit | Discuss | Note

    题意:斐波拉契数列,求不能由这些k个斐波那契数列数组成的最小整数

    思路:先手写找规律,再用黑科技代码模板

    //递推公式黑科技
    #include<bits/stdc++.h>
    using namespace std;
    #define X first
    #define Y second
    #define PB push_back
    #define MP make_pair
    #define MEM(x,y) memset(x,y,sizeof(x));
    #define bug(x) cout<<"bug"<<x<<endl;
    typedef long long ll;
    typedef pair<int,int> pii;
    using namespace std;
    const int maxn=1e3+10;
    const int mod=998244353;
    ll powmod(ll a,ll b){
        ll res=1;a%=mod;
        assert(b>=0);
        for(;b;b>>=1){
            if(b&1)res=res*a%mod;a=a*a%mod;
        }
        return res;
    }
    // head
    namespace linear_seq {
        const int N=10010;
        ll res[N],base[N],_c[N],_md[N];
        vector<int> Md;
        void mul(ll *a,ll *b,int k) {
            for(int i=0;i<k+k;i++) _c[i]=0;
            for(int i=0;i<k;i++)
                if (a[i])
                    for(int j=0;j<k;j++) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
            for (int i=k+k-1;i>=k;i--)
                if (_c[i])
                    for(int j=0;j<Md.size();j++)
                        _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
            for(int i=0;i<k;i++) a[i]=_c[i];
        }
        int solve(ll n,vector<int> a,vector<int> b) {
        // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
            ll ans=0,pnt=0;
            int k=a.size();
            assert(a.size()==b.size());
            for(int i=0;i<k;i++) _md[k-1-i]=-a[i];_md[k]=1;
            Md.clear();
            for(int i=0;i<k;i++) if (_md[i]!=0) Md.push_back(i);
            for(int i=0;i<k;i++) res[i]=base[i]=0;
            res[0]=1;
            while ((1ll<<pnt)<=n) pnt++;
            for (int p=pnt;p>=0;p--) {
                mul(res,res,k);
                if ((n>>p)&1) {
                    for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                    for(int j=0;j<Md.size();j++) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
                }
            }
            for(int i=0;i<k;i++) ans=(ans+res[i]*b[i])%mod;
            if (ans<0) ans+=mod;
            return ans;
        }
        vector<int> BM(vector<int> s) {
            vector<int> C(1,1),B(1,1);
            int L=0,m=1,b=1;
            for(int n=0;n<s.size();n++) {
                ll d=0;
                for(int i=0;i<L+1;i++) d=(d+(ll)C[i]*s[n-i])%mod;
                if (d==0) ++m;
                else if (2*L<=n) {
                    vector<int> T=C;
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (C.size()<B.size()+m) C.PB(0);
                    for(int i=0;i<B.size();i++) C[i+m]=(C[i+m]+c*B[i])%mod;
                    L=n+1-L; B=T; b=d; m=1;
                } else {
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (C.size()<B.size()+m) C.PB(0);
                    for(int i=0;i<B.size();i++) C[i+m]=(C[i+m]+c*B[i])%mod;
                    ++m;
                }
            }
            return C;
        }
        int gao(vector<int> a,ll n) {
            vector<int> c=BM(a);
            c.erase(c.begin());
            for(int i=0;i<c.size();i++) c[i]=(mod-c[i])%mod;
            return solve(n,c,vector<int>(a.begin(),a.begin()+c.size()));
        }
    };
    
    int main(){
        ll t,n;
    //    cin>>t;
        while(cin>>n){
            cout<<(linear_seq::gao(vector<int>{5,13,34,89},n-1)%mod-1)%mod<<endl;
        }
    }



  • 相关阅读:
    css笔记
    js面向对象开发之--元素拖拽
    git命令笔记
    数据扁平化笔记。
    手写冒泡排序
    ant design-Table组件实现每一行某个特定字段连续相同进行行合并。
    Array.prototype.reduce()。
    I/O多路复用
    TCP/IP四层体系结构
    TCP的三次握手和四次挥手,为什么?
  • 原文地址:https://www.cnblogs.com/bryce1010/p/9387252.html
Copyright © 2011-2022 走看看