zoukankan      html  css  js  c++  java
  • 欧几里得和扩展欧几里得

    1.欧几里得函数

    有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的naïve ,那怎么做?

    欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了,这就是欧几里德算法,用 C++ 语言描述如下:

    int gcd(ll a,ll b)
    {
    	return b==0?a:gcd(b,a%b);
    }

    2.扩展欧几里得函数

    现在我们知道了 a 和 b 的最大公约数是 gcd ,那么,我们一定能够找到这样的 x 和 y ,使得: a*x + b*y = gcd 这是一个不定方程(其实是一种丢番图方程),有多解是一定的,但是只要我们找到一组特殊的解 x0 和 y0 那么,我们就可以用 x0 和 y0 表示出整个不定方程的通解:

            x = x0 + (b/gcd)*t

            y = y0 – (a/gcd)*t

        为什么不是:

            x = x0 + b*t

            y = y0 – a*t

        这个问题也是在今天早上想通的,想通之后忍不住喷了自己一句弱逼。那是因为:

        b/gcd 是 b 的因子, a/gcd 是 a 的因子是吧?那么,由于 t的取值范围是整数,你说 (b/gcd)*t 取到的值多还是 b*t 取到的值多?同理,(a/gcd)*t 取到的值多还是 a*gcd 取到的值多?那肯定又要问了,那为什么不是更小的数,非得是 b/gcd 和a/gcd ?

        注意到:我们令 B = b/gcd , A = a、gcd , 那么,A 和 B 一定是互素的吧?这不就证明了 最小的系数就是 A 和 B 了吗?要是实在还有什么不明白的,看看《基础数论》(哈尔滨工业大学出版社),这本书把关于不定方程的通解讲的很清楚

        现在,我们知道了一定存在 x 和 y 使得 : a*x + b*y = gcd , 那么,怎么求出这个特解 x 和 y 呢?只需要在欧几里德算法的基础上加点改动就行了。

        我们观察到:欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a*1 + b*0 = gcd

        当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?

        假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?

        我们知道: a%b = a - (a/b)*b(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:

            gcd = b*x1 + (a-(a/b)*b)*y1

                = b*x1 + a*y1 – (a/b)*b*y1

                = a*y1 + b*(x1 – a/b*y1)

        对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?

        这里:

            x = y1

            y = x1 – a/b*y1

    void ext_gcd(ll a,ll b,ll &d,ll &x,ll &y)
    {
        if(b==0)
        {
            d=a;
            x=1,y=0;
        }
        else
        {
            ext_gcd(b,a%b,d,y,x);
            y-=(a/b)*x;
        }
    }


    3.乘法逆元

     什么叫乘法逆元?

        

        这里,我们称 x 是 a 关于 m 的乘法逆元

        这怎么求?可以等价于这样的表达式: a*x + m*y = 1

        看出什么来了吗?没错,当gcd(a , m) != 1 的时候是没有解的这也是 a*x + b*y = c 有解的充要条件: c % gcd(a , b) == 0

        接着乘法逆元讲,一般,我们能够找到无数组解满足条件,但是一般是让你求解出最小的那组解,怎么做?我们求解出来了一个特殊的解 x0 那么,我们用 x0 % m其实就得到了最小的解了。为什么?

    可以这样思考:

        x 的通解不是 x0 + m*t 吗?

        那么,也就是说, a 关于 m 的逆元是一个关于 m 同余的,那么根据最小整数原理,一定存在一个最小的正整数,它是 a 关于m 的逆元,而最小的肯定是在(0 , m)之间的,而且只有一个,这就好解释了。

        可能有人注意到了,这里,我写通解的时候并不是 x0 + (m/gcd)*t ,但是想想一下就明白了,gcd = 1,所以写了跟没写是一样的,但是,由于问题的特殊性,有时候我们得到的特解 x0 是一个负数,还有的时候我们的 m 也是一个负数这怎么办?

        当 m 是负数的时候,我们取 m 的绝对值就行了,当 x0 是负数的时候,他模上 m 的结果仍然是负数(在计算机计算的结果上是这样的,虽然定义的时候不是这样的),这时候,我们仍然让 x0 对abs(m) 取模,然后结果再加上abs(m) 就行了

    #include<iostream>
    using namespace std;
    
    void ext_gcd(int a,int b,int &d,int &x,int &y)
    {
        if(!b)
        {
            d=a;
            x=1;y=0;
        }
        else
        {
            ext_gcd(b,a%b,d,y,x);
            y-=x*(a/b);
        }
    }
    int mod_inverse(int a,int m)
    {
    	int x,y,d;
    	ext_gcd(a,m,d,x,y);
    	return (m+x%m)%m;
    }
    
    int main()
    {
        int a,m;
        while(cin>>a>>m)
        cout<<mod_inverse(a,m)<<endl;;
        return 0;
    }


  • 相关阅读:
    为什么你应该(从现在开始就)写博客
    ASP.net 中使用Flexigrid详细教程之二直接使用数据库数据(有图有真相)
    保护眼睛的方法 (眼睛累了吗 来看看吧)
    程序员不如快递员?
    项目管理界面
    地址栏射击游戏!对,你没看错,就是在地址栏上玩的游戏,有图有真相!
    书写是为了更好的思考
    IT人员如何找到自己的时间?
    std::mem_fun_ref,mem_fun1_ref分析
    __declspec(selectany) 的作用是什么
  • 原文地址:https://www.cnblogs.com/bryce1010/p/9387273.html
Copyright © 2011-2022 走看看