zoukankan      html  css  js  c++  java
  • elasticsearch之分析过程

    前言

    现在,我们已经了解了如何建立索引和搜索数据了。
    那么,是时候来探索背后的故事了!当数据传递到elasticsearch后,到底发生了什么?

    一、分析过程

    当数据被发送到elasticsearch后并加入到倒排索引之前,elasticsearch会对该文档的进行一系列的处理步骤:

    • 字符过滤:使用字符过滤器转变字符。
    • 文本切分为分词:将文本(档)分为单个或多个分词。
    • 分词过滤:使用分词过滤器转变每个分词。
    • 分词索引:最终将分词存储在Lucene倒排索引中。

    整体流程如下图所示:

    接下来,我们简要的介绍elasticsearch中的分析器、分词器和分词过滤器。它们配置简单,灵活好用,我们可以通过不同的组合来获取我们想要的分词!

    是的,无论多么复杂的分析过程,都是为了获取更加人性化的分词!
    接下来,我们来看看其中,在整个分析过程的各个组件吧。

    二、分析器

    在elasticsearch中,一个分析器可以包括:

    • 可选的字符过滤器
    • 一个分词器
    • 0个或多个分词过滤器

    接下来简要的介绍各内置分词的大致情况。在介绍之前,为了方便演示。如果你已经按照之前的教程安装了ik analysis,现在请暂时将该插件移出plugins目录。

    标准分析器:standard analyzer

    标准分析器(standard analyzer):是elasticsearch的默认分析器,该分析器综合了大多数欧洲语言来说合理的默认模块,包括标准分词器、标准分词过滤器、小写转换分词过滤器和停用词分词过滤器。

    Copy
    POST _analyze
    {
      "analyzer": "standard",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    分词结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "to",
          "start_offset" : 0,
          "end_offset" : 2,
          "type" : "<ALPHANUM>",
          "position" : 0
        },
        {
          "token" : "be",
          "start_offset" : 3,
          "end_offset" : 5,
          "type" : "<ALPHANUM>",
          "position" : 1
        },
        {
          "token" : "or",
          "start_offset" : 6,
          "end_offset" : 8,
          "type" : "<ALPHANUM>",
          "position" : 2
        },
        {
          "token" : "not",
          "start_offset" : 9,
          "end_offset" : 12,
          "type" : "<ALPHANUM>",
          "position" : 3
        },
        {
          "token" : "to",
          "start_offset" : 13,
          "end_offset" : 15,
          "type" : "<ALPHANUM>",
          "position" : 4
        },
        {
          "token" : "be",
          "start_offset" : 16,
          "end_offset" : 18,
          "type" : "<ALPHANUM>",
          "position" : 5
        },
        {
          "token" : "that",
          "start_offset" : 21,
          "end_offset" : 25,
          "type" : "<ALPHANUM>",
          "position" : 6
        },
        {
          "token" : "is",
          "start_offset" : 26,
          "end_offset" : 28,
          "type" : "<ALPHANUM>",
          "position" : 7
        },
        {
          "token" : "a",
          "start_offset" : 29,
          "end_offset" : 30,
          "type" : "<ALPHANUM>",
          "position" : 8
        },
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "<ALPHANUM>",
          "position" : 9
        },
        {
          "token" : "莎",
          "start_offset" : 45,
          "end_offset" : 46,
          "type" : "<IDEOGRAPHIC>",
          "position" : 10
        },
        {
          "token" : "士",
          "start_offset" : 46,
          "end_offset" : 47,
          "type" : "<IDEOGRAPHIC>",
          "position" : 11
        },
        {
          "token" : "比",
          "start_offset" : 47,
          "end_offset" : 48,
          "type" : "<IDEOGRAPHIC>",
          "position" : 12
        },
        {
          "token" : "亚",
          "start_offset" : 48,
          "end_offset" : 49,
          "type" : "<IDEOGRAPHIC>",
          "position" : 13
        }
      ]
    }
    

    简单分析器:simple analyzer

    简单分析器(simple analyzer):简单分析器仅使用了小写转换分词,这意味着在非字母处进行分词,并将分词自动转换为小写。这个分词器对于亚种语言来说效果不佳,因为亚洲语言不是根据空白来分词的,所以一般用于欧洲言中。

    Copy
    POST _analyze
    {
      "analyzer": "simple",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    分词结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "to",
          "start_offset" : 0,
          "end_offset" : 2,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "be",
          "start_offset" : 3,
          "end_offset" : 5,
          "type" : "word",
          "position" : 1
        },
        {
          "token" : "or",
          "start_offset" : 6,
          "end_offset" : 8,
          "type" : "word",
          "position" : 2
        },
        {
          "token" : "not",
          "start_offset" : 9,
          "end_offset" : 12,
          "type" : "word",
          "position" : 3
        },
        {
          "token" : "to",
          "start_offset" : 13,
          "end_offset" : 15,
          "type" : "word",
          "position" : 4
        },
        {
          "token" : "be",
          "start_offset" : 16,
          "end_offset" : 18,
          "type" : "word",
          "position" : 5
        },
        {
          "token" : "that",
          "start_offset" : 21,
          "end_offset" : 25,
          "type" : "word",
          "position" : 6
        },
        {
          "token" : "is",
          "start_offset" : 26,
          "end_offset" : 28,
          "type" : "word",
          "position" : 7
        },
        {
          "token" : "a",
          "start_offset" : 29,
          "end_offset" : 30,
          "type" : "word",
          "position" : 8
        },
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "word",
          "position" : 9
        },
        {
          "token" : "莎士比亚",
          "start_offset" : 45,
          "end_offset" : 49,
          "type" : "word",
          "position" : 10
        }
      ]
    }
    

    空白分析器:whitespace analyzer

    空白(格)分析器(whitespace analyzer):这玩意儿只是根据空白将文本切分为若干分词,真是有够偷懒!

    Copy
    POST _analyze
    {
      "analyzer": "whitespace",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    分词结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "To",
          "start_offset" : 0,
          "end_offset" : 2,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "be",
          "start_offset" : 3,
          "end_offset" : 5,
          "type" : "word",
          "position" : 1
        },
        {
          "token" : "or",
          "start_offset" : 6,
          "end_offset" : 8,
          "type" : "word",
          "position" : 2
        },
        {
          "token" : "not",
          "start_offset" : 9,
          "end_offset" : 12,
          "type" : "word",
          "position" : 3
        },
        {
          "token" : "to",
          "start_offset" : 13,
          "end_offset" : 15,
          "type" : "word",
          "position" : 4
        },
        {
          "token" : "be,",
          "start_offset" : 16,
          "end_offset" : 19,
          "type" : "word",
          "position" : 5
        },
        {
          "token" : "That",
          "start_offset" : 21,
          "end_offset" : 25,
          "type" : "word",
          "position" : 6
        },
        {
          "token" : "is",
          "start_offset" : 26,
          "end_offset" : 28,
          "type" : "word",
          "position" : 7
        },
        {
          "token" : "a",
          "start_offset" : 29,
          "end_offset" : 30,
          "type" : "word",
          "position" : 8
        },
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "word",
          "position" : 9
        },
        {
          "token" : "————",
          "start_offset" : 40,
          "end_offset" : 44,
          "type" : "word",
          "position" : 10
        },
        {
          "token" : "莎士比亚",
          "start_offset" : 45,
          "end_offset" : 49,
          "type" : "word",
          "position" : 11
        }
      ]
    }
    

    停用词分析器:stop analyzer

    停用词分析(stop analyzer)和简单分析器的行为很像,只是在分词流中额外的过滤了停用词。

    Copy
    POST _analyze
    {
      "analyzer": "stop",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果也很简单:

    Copy
    {
      "tokens" : [
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "word",
          "position" : 9
        },
        {
          "token" : "莎士比亚",
          "start_offset" : 45,
          "end_offset" : 49,
          "type" : "word",
          "position" : 10
        }
      ]
    }
    

    关键词分析器:keyword analyzer

    关键词分析器(keyword analyzer)将整个字段当做单独的分词,如无必要,我们不在映射中使用关键词分析器。

    Copy
    POST _analyze
    {
      "analyzer": "keyword",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "To be or not to be,  That is a question ———— 莎士比亚",
          "start_offset" : 0,
          "end_offset" : 49,
          "type" : "word",
          "position" : 0
        }
      ]
    }
    

    说的一点没错,分析结果是将整段当做单独的分词。

    模式分析器:pattern analyzer

    模式分析器(pattern analyzer)允许我们指定一个分词切分模式。但是通常更佳的方案是使用定制的分析器,组合现有的模式分词器和所需要的分词过滤器更加合适。

    Copy
    POST _analyze
    {
      "analyzer": "pattern",
      "explain": false, 
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "to",
          "start_offset" : 0,
          "end_offset" : 2,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "be",
          "start_offset" : 3,
          "end_offset" : 5,
          "type" : "word",
          "position" : 1
        },
        {
          "token" : "or",
          "start_offset" : 6,
          "end_offset" : 8,
          "type" : "word",
          "position" : 2
        },
        {
          "token" : "not",
          "start_offset" : 9,
          "end_offset" : 12,
          "type" : "word",
          "position" : 3
        },
        {
          "token" : "to",
          "start_offset" : 13,
          "end_offset" : 15,
          "type" : "word",
          "position" : 4
        },
        {
          "token" : "be",
          "start_offset" : 16,
          "end_offset" : 18,
          "type" : "word",
          "position" : 5
        },
        {
          "token" : "that",
          "start_offset" : 21,
          "end_offset" : 25,
          "type" : "word",
          "position" : 6
        },
        {
          "token" : "is",
          "start_offset" : 26,
          "end_offset" : 28,
          "type" : "word",
          "position" : 7
        },
        {
          "token" : "a",
          "start_offset" : 29,
          "end_offset" : 30,
          "type" : "word",
          "position" : 8
        },
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "word",
          "position" : 9
        }
      ]
    }
    

    我们来自定制一个模式分析器,比如我们写匹配邮箱的正则。

    Copy
    PUT pattern_test
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_email_analyzer":{
              "type":"pattern",
              "pattern":"\W|_",
              "lowercase":true
            }
          }
        }
      }
    }
    

    上例中,我们在创建一条索引的时候,配置分析器为自定义的分析器。

    需要注意的是,在json字符串中,正则的斜杠需要转义。

    我们使用自定义的分析器来查询。

    Copy
    POST pattern_test/_analyze
    {
      "analyzer": "my_email_analyzer",
      "text": "John_Smith@foo-bar.com"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "john",
          "start_offset" : 0,
          "end_offset" : 4,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "smith",
          "start_offset" : 5,
          "end_offset" : 10,
          "type" : "word",
          "position" : 1
        },
        {
          "token" : "foo",
          "start_offset" : 11,
          "end_offset" : 14,
          "type" : "word",
          "position" : 2
        },
        {
          "token" : "bar",
          "start_offset" : 15,
          "end_offset" : 18,
          "type" : "word",
          "position" : 3
        },
        {
          "token" : "com",
          "start_offset" : 19,
          "end_offset" : 22,
          "type" : "word",
          "position" : 4
        }
      ]
    }
    

    语言和多语言分析器:chinese

    elasticsearch为很多世界流行语言提供良好的、简单的、开箱即用的语言分析器集合:阿拉伯语、亚美尼亚语、巴斯克语、巴西语、保加利亚语、加泰罗尼亚语、中文、捷克语、丹麦、荷兰语、英语、芬兰语、法语、加里西亚语、德语、希腊语、北印度语、匈牙利语、印度尼西亚、爱尔兰语、意大利语、日语、韩国语、库尔德语、挪威语、波斯语、葡萄牙语、罗马尼亚语、俄语、西班牙语、瑞典语、土耳其语和泰语。

    我们可以指定其中之一的语言来指定特定的语言分析器,但必须是小写的名字!如果你要分析的语言不在上述集合中,可能还需要搭配相应的插件支持。

    Copy
    POST _analyze
    {
      "analyzer": "chinese",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "<ALPHANUM>",
          "position" : 9
        },
        {
          "token" : "莎",
          "start_offset" : 45,
          "end_offset" : 46,
          "type" : "<IDEOGRAPHIC>",
          "position" : 10
        },
        {
          "token" : "士",
          "start_offset" : 46,
          "end_offset" : 47,
          "type" : "<IDEOGRAPHIC>",
          "position" : 11
        },
        {
          "token" : "比",
          "start_offset" : 47,
          "end_offset" : 48,
          "type" : "<IDEOGRAPHIC>",
          "position" : 12
        },
        {
          "token" : "亚",
          "start_offset" : 48,
          "end_offset" : 49,
          "type" : "<IDEOGRAPHIC>",
          "position" : 13
        }
      ]
    }
    

    也可以是别语言:

    Copy
    POST _analyze
    {
      "analyzer": "french",
      "text":"Je suis ton père"
    }
    POST _analyze
    {
      "analyzer": "german",
      "text":"Ich bin dein vater"
    }
    

    雪球分析器:snowball analyzer

    雪球分析器(snowball analyzer)除了使用标准的分词和分词过滤器(和标准分析器一样)也是用了小写分词过滤器和停用词过滤器,除此之外,它还是用了雪球词干器对文本进行词干提取。

    Copy
    POST _analyze
    {
      "analyzer": "snowball",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "<ALPHANUM>",
          "position" : 9
        },
        {
          "token" : "莎",
          "start_offset" : 45,
          "end_offset" : 46,
          "type" : "<IDEOGRAPHIC>",
          "position" : 10
        },
        {
          "token" : "士",
          "start_offset" : 46,
          "end_offset" : 47,
          "type" : "<IDEOGRAPHIC>",
          "position" : 11
        },
        {
          "token" : "比",
          "start_offset" : 47,
          "end_offset" : 48,
          "type" : "<IDEOGRAPHIC>",
          "position" : 12
        },
        {
          "token" : "亚",
          "start_offset" : 48,
          "end_offset" : 49,
          "type" : "<IDEOGRAPHIC>",
          "position" : 13
        }
      ]
    }
    

    三、字符过滤器

    字符过滤器在<charFilter>属性中定义,它是对字符流进行处理。字符过滤器种类不多。elasticearch只提供了三种字符过滤器:

    • HTML字符过滤器(HTML Strip Char Filter)
    • 映射字符过滤器(Mapping Char Filter)
    • 模式替换过滤器(Pattern Replace Char Filter)

    我们来分别看看都是怎么玩的吧!

    HTML字符过滤器

    HTML字符过滤器(HTML Strip Char Filter)从文本中去除HTML元素。

    Copy
    POST _analyze
    {
      "tokenizer": "keyword",
      "char_filter": ["html_strip"],
      "text":"<p>I&apos;m so <b>happy</b>!</p>"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : """
    
    I'm so happy!
    
    """,
          "start_offset" : 0,
          "end_offset" : 32,
          "type" : "word",
          "position" : 0
        }
      ]
    }
    

    映射字符过滤器

    映射字符过滤器(Mapping Char Filter)接收键值的映射,每当遇到与键相同的字符串时,它就用该键关联的值替换它们。

    Copy
    PUT pattern_test4
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer":{
              "tokenizer":"keyword",
              "char_filter":["my_char_filter"]
            }
          },
          "char_filter":{
              "my_char_filter":{
                "type":"mapping",
                "mappings":["苍井空 => 666","武藤兰 => 888"]
              }
            }
        }
      }
    }
    

    上例中,我们自定义了一个分析器,其内的分词器使用关键字分词器,字符过滤器则是自定制的,将字符中的苍井空替换为666,武藤兰替换为888。

    Copy
    POST pattern_test4/_analyze
    {
      "analyzer": "my_analyzer",
      "text": "苍井空热爱武藤兰,可惜后来苍井空结婚了"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "666热爱888,可惜后来666结婚了",
          "start_offset" : 0,
          "end_offset" : 19,
          "type" : "word",
          "position" : 0
        }
      ]
    }
    

    模式替换过滤器

    模式替换过滤器(Pattern Replace Char Filter)使用正则表达式匹配并替换字符串中的字符。但要小心你写的抠脚的正则表达式。因为这可能导致性能变慢!

    Copy
    PUT pattern_test5
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer": {
              "tokenizer": "standard",
              "char_filter": [
                "my_char_filter"
              ]
            }
          },
          "char_filter": {
            "my_char_filter": {
              "type": "pattern_replace",
              "pattern": "(\d+)-(?=\d)",
              "replacement": "$1_"
            }
          }
        }
      }
    }
    

    上例中,我们自定义了一个正则规则。

    Copy
    POST pattern_test5/_analyze
    {
      "analyzer": "my_analyzer",
      "text": "My credit card is 123-456-789"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "My",
          "start_offset" : 0,
          "end_offset" : 2,
          "type" : "<ALPHANUM>",
          "position" : 0
        },
        {
          "token" : "credit",
          "start_offset" : 3,
          "end_offset" : 9,
          "type" : "<ALPHANUM>",
          "position" : 1
        },
        {
          "token" : "card",
          "start_offset" : 10,
          "end_offset" : 14,
          "type" : "<ALPHANUM>",
          "position" : 2
        },
        {
          "token" : "is",
          "start_offset" : 15,
          "end_offset" : 17,
          "type" : "<ALPHANUM>",
          "position" : 3
        },
        {
          "token" : "123_456_789",
          "start_offset" : 18,
          "end_offset" : 29,
          "type" : "<NUM>",
          "position" : 4
        }
      ]
    }
    

    我们大致的了解elasticsearch分析处理数据的流程。但可以看到的是,我们极少地在例子中演示中文处理。因为elasticsearch内置的分析器处理起来中文不是很好。所以,后续会介绍一个重量级的插件就是elasticsearch analysis ik(一般习惯称呼为ik分词器)。

    四、分词器

    由于elasticsearch内置了分析器,它同样也包含了分词器。分词器,顾名思义,主要的操作是将文本字符串分解为小块,而这些小块这被称为分词token

    标准分词器:standard tokenizer

    标准分词器(standard tokenizer)是一个基于语法的分词器,对于大多数欧洲语言来说还是不错的,它同时还处理了Unicode文本的分词,但分词默认的最大长度是255字节,它也移除了逗号和句号这样的标点符号。

    Copy
    POST _analyze
    {
      "tokenizer": "standard",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "To",
          "start_offset" : 0,
          "end_offset" : 2,
          "type" : "<ALPHANUM>",
          "position" : 0
        },
        {
          "token" : "be",
          "start_offset" : 3,
          "end_offset" : 5,
          "type" : "<ALPHANUM>",
          "position" : 1
        },
        {
          "token" : "or",
          "start_offset" : 6,
          "end_offset" : 8,
          "type" : "<ALPHANUM>",
          "position" : 2
        },
        {
          "token" : "not",
          "start_offset" : 9,
          "end_offset" : 12,
          "type" : "<ALPHANUM>",
          "position" : 3
        },
        {
          "token" : "to",
          "start_offset" : 13,
          "end_offset" : 15,
          "type" : "<ALPHANUM>",
          "position" : 4
        },
        {
          "token" : "be",
          "start_offset" : 16,
          "end_offset" : 18,
          "type" : "<ALPHANUM>",
          "position" : 5
        },
        {
          "token" : "That",
          "start_offset" : 21,
          "end_offset" : 25,
          "type" : "<ALPHANUM>",
          "position" : 6
        },
        {
          "token" : "is",
          "start_offset" : 26,
          "end_offset" : 28,
          "type" : "<ALPHANUM>",
          "position" : 7
        },
        {
          "token" : "a",
          "start_offset" : 29,
          "end_offset" : 30,
          "type" : "<ALPHANUM>",
          "position" : 8
        },
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "<ALPHANUM>",
          "position" : 9
        },
        {
          "token" : "莎",
          "start_offset" : 45,
          "end_offset" : 46,
          "type" : "<IDEOGRAPHIC>",
          "position" : 10
        },
        {
          "token" : "士",
          "start_offset" : 46,
          "end_offset" : 47,
          "type" : "<IDEOGRAPHIC>",
          "position" : 11
        },
        {
          "token" : "比",
          "start_offset" : 47,
          "end_offset" : 48,
          "type" : "<IDEOGRAPHIC>",
          "position" : 12
        },
        {
          "token" : "亚",
          "start_offset" : 48,
          "end_offset" : 49,
          "type" : "<IDEOGRAPHIC>",
          "position" : 13
        }
      ]
    }
    

    关键词分词器:keyword tokenizer

    关键词分词器(keyword tokenizer)是一种简单的分词器,将整个文本作为单个的分词,提供给分词过滤器,当你只想用分词过滤器,而不做分词操作时,它是不错的选择。

    Copy
    POST _analyze
    {
      "tokenizer": "keyword",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "To be or not to be,  That is a question ———— 莎士比亚",
          "start_offset" : 0,
          "end_offset" : 49,
          "type" : "word",
          "position" : 0
        }
      ]
    }
    

    字母分词器:letter tokenizer

    字母分词器(letter tokenizer)根据非字母的符号,将文本切分成分词。

    Copy
    POST _analyze
    {
      "tokenizer": "letter",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "To",
          "start_offset" : 0,
          "end_offset" : 2,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "be",
          "start_offset" : 3,
          "end_offset" : 5,
          "type" : "word",
          "position" : 1
        },
        {
          "token" : "or",
          "start_offset" : 6,
          "end_offset" : 8,
          "type" : "word",
          "position" : 2
        },
        {
          "token" : "not",
          "start_offset" : 9,
          "end_offset" : 12,
          "type" : "word",
          "position" : 3
        },
        {
          "token" : "to",
          "start_offset" : 13,
          "end_offset" : 15,
          "type" : "word",
          "position" : 4
        },
        {
          "token" : "be",
          "start_offset" : 16,
          "end_offset" : 18,
          "type" : "word",
          "position" : 5
        },
        {
          "token" : "That",
          "start_offset" : 21,
          "end_offset" : 25,
          "type" : "word",
          "position" : 6
        },
        {
          "token" : "is",
          "start_offset" : 26,
          "end_offset" : 28,
          "type" : "word",
          "position" : 7
        },
        {
          "token" : "a",
          "start_offset" : 29,
          "end_offset" : 30,
          "type" : "word",
          "position" : 8
        },
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "word",
          "position" : 9
        },
        {
          "token" : "莎士比亚",
          "start_offset" : 45,
          "end_offset" : 49,
          "type" : "word",
          "position" : 10
        }
      ]
    }
    

    小写分词器:lowercase tokenizer

    小写分词器(lowercase tokenizer)结合了常规的字母分词器和小写分词过滤器(跟你想的一样,就是将所有的分词转化为小写)的行为。通过一个单独的分词器来实现的主要原因是,一次进行两项操作会获得更好的性能。

    Copy
    POST _analyze
    {
      "tokenizer": "lowercase",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "to",
          "start_offset" : 0,
          "end_offset" : 2,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "be",
          "start_offset" : 3,
          "end_offset" : 5,
          "type" : "word",
          "position" : 1
        },
        {
          "token" : "or",
          "start_offset" : 6,
          "end_offset" : 8,
          "type" : "word",
          "position" : 2
        },
        {
          "token" : "not",
          "start_offset" : 9,
          "end_offset" : 12,
          "type" : "word",
          "position" : 3
        },
        {
          "token" : "to",
          "start_offset" : 13,
          "end_offset" : 15,
          "type" : "word",
          "position" : 4
        },
        {
          "token" : "be",
          "start_offset" : 16,
          "end_offset" : 18,
          "type" : "word",
          "position" : 5
        },
        {
          "token" : "that",
          "start_offset" : 21,
          "end_offset" : 25,
          "type" : "word",
          "position" : 6
        },
        {
          "token" : "is",
          "start_offset" : 26,
          "end_offset" : 28,
          "type" : "word",
          "position" : 7
        },
        {
          "token" : "a",
          "start_offset" : 29,
          "end_offset" : 30,
          "type" : "word",
          "position" : 8
        },
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "word",
          "position" : 9
        },
        {
          "token" : "莎士比亚",
          "start_offset" : 45,
          "end_offset" : 49,
          "type" : "word",
          "position" : 10
        }
      ]
    }
    

    空白分词器:whitespace tokenizer

    空白分词器(whitespace tokenizer)通过空白来分隔不同的分词,空白包括空格、制表符、换行等。但是,我们需要注意的是,空白分词器不会删除任何标点符号。

    Copy
    POST _analyze
    {
      "tokenizer": "whitespace",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "To",
          "start_offset" : 0,
          "end_offset" : 2,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "be",
          "start_offset" : 3,
          "end_offset" : 5,
          "type" : "word",
          "position" : 1
        },
        {
          "token" : "or",
          "start_offset" : 6,
          "end_offset" : 8,
          "type" : "word",
          "position" : 2
        },
        {
          "token" : "not",
          "start_offset" : 9,
          "end_offset" : 12,
          "type" : "word",
          "position" : 3
        },
        {
          "token" : "to",
          "start_offset" : 13,
          "end_offset" : 15,
          "type" : "word",
          "position" : 4
        },
        {
          "token" : "be,",
          "start_offset" : 16,
          "end_offset" : 19,
          "type" : "word",
          "position" : 5
        },
        {
          "token" : "That",
          "start_offset" : 21,
          "end_offset" : 25,
          "type" : "word",
          "position" : 6
        },
        {
          "token" : "is",
          "start_offset" : 26,
          "end_offset" : 28,
          "type" : "word",
          "position" : 7
        },
        {
          "token" : "a",
          "start_offset" : 29,
          "end_offset" : 30,
          "type" : "word",
          "position" : 8
        },
        {
          "token" : "question",
          "start_offset" : 31,
          "end_offset" : 39,
          "type" : "word",
          "position" : 9
        },
        {
          "token" : "————",
          "start_offset" : 40,
          "end_offset" : 44,
          "type" : "word",
          "position" : 10
        },
        {
          "token" : "莎士比亚",
          "start_offset" : 45,
          "end_offset" : 49,
          "type" : "word",
          "position" : 11
        }
      ]
    }
    

    模式分词器:pattern tokenizer

    模式分词器(pattern tokenizer)允许指定一个任意的模式,将文本切分为分词。

    Copy
    POST _analyze
    {
      "tokenizer": "pattern",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    现在让我们手动定制一个以逗号分隔的分词器。

    Copy
    PUT pattern_test2
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer":{
              "tokenizer":"my_tokenizer"
            }
          },
          "tokenizer": {
            "my_tokenizer":{
              "type":"pattern",
              "pattern":","
            }
          }
        }
      }
    }
    

    上例中,在settings下的自定义分析器my_analyzer中,自定义的模式分词器名叫my_tokenizer;在与自定义分析器同级,为新建的自定义模式分词器设置一些属性,比如以逗号分隔。

    Copy
    POST pattern_test2/_analyze
    {
      "tokenizer": "my_tokenizer",
      "text":"To be or not to be,  That is a question ———— 莎士比亚"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "To be or not to be",
          "start_offset" : 0,
          "end_offset" : 18,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "  That is a question ———— 莎士比亚",
          "start_offset" : 19,
          "end_offset" : 49,
          "type" : "word",
          "position" : 1
        }
      ]
    }
    

    根据结果可以看到,文档被逗号分割为两部分。

    UAX URL电子邮件分词器:UAX RUL email tokenizer

    在处理单个的英文单词的情况下,标准分词器是个非常好的选择,但是现在很多的网站以网址或电子邮件作为结尾,比如我们现在有这样的一个文本:

    Copy
    作者:张开
    来源:未知 
    原文:https://www.cnblogs.com/Neeo/articles/10402742.html
    邮箱:xxxxxxx@xx.com
    版权声明:本文为博主原创文章,转载请附上博文链接!
    

    现在让我们使用标准分词器查看一下:

    Copy
    POST _analyze
    {
      "tokenizer": "standard",
      "text":"作者:张开来源:未知原文:https://www.cnblogs.com/Neeo/articles/10402742.html邮箱:xxxxxxx@xx.com版权声明:本文为博主原创文章,转载请附上博文链接!"
    }
    

    结果很长:

    Copy
    {
      "tokens" : [
        {
          "token" : "作",
          "start_offset" : 0,
          "end_offset" : 1,
          "type" : "<IDEOGRAPHIC>",
          "position" : 0
        },
        {
          "token" : "者",
          "start_offset" : 1,
          "end_offset" : 2,
          "type" : "<IDEOGRAPHIC>",
          "position" : 1
        },
        {
          "token" : "张",
          "start_offset" : 3,
          "end_offset" : 4,
          "type" : "<IDEOGRAPHIC>",
          "position" : 2
        },
        {
          "token" : "开",
          "start_offset" : 4,
          "end_offset" : 5,
          "type" : "<IDEOGRAPHIC>",
          "position" : 3
        },
        {
          "token" : "来",
          "start_offset" : 5,
          "end_offset" : 6,
          "type" : "<IDEOGRAPHIC>",
          "position" : 4
        },
        {
          "token" : "源",
          "start_offset" : 6,
          "end_offset" : 7,
          "type" : "<IDEOGRAPHIC>",
          "position" : 5
        },
        {
          "token" : "未",
          "start_offset" : 8,
          "end_offset" : 9,
          "type" : "<IDEOGRAPHIC>",
          "position" : 6
        },
        {
          "token" : "知",
          "start_offset" : 9,
          "end_offset" : 10,
          "type" : "<IDEOGRAPHIC>",
          "position" : 7
        },
        {
          "token" : "原",
          "start_offset" : 10,
          "end_offset" : 11,
          "type" : "<IDEOGRAPHIC>",
          "position" : 8
        },
        {
          "token" : "文",
          "start_offset" : 11,
          "end_offset" : 12,
          "type" : "<IDEOGRAPHIC>",
          "position" : 9
        },
        {
          "token" : "https",
          "start_offset" : 13,
          "end_offset" : 18,
          "type" : "<ALPHANUM>",
          "position" : 10
        },
        {
          "token" : "www.cnblogs.com",
          "start_offset" : 21,
          "end_offset" : 36,
          "type" : "<ALPHANUM>",
          "position" : 11
        },
        {
          "token" : "Neeo",
          "start_offset" : 37,
          "end_offset" : 41,
          "type" : "<ALPHANUM>",
          "position" : 12
        },
        {
          "token" : "articles",
          "start_offset" : 42,
          "end_offset" : 50,
          "type" : "<ALPHANUM>",
          "position" : 13
        },
        {
          "token" : "10402742",
          "start_offset" : 51,
          "end_offset" : 59,
          "type" : "<NUM>",
          "position" : 14
        },
        {
          "token" : "html",
          "start_offset" : 60,
          "end_offset" : 64,
          "type" : "<ALPHANUM>",
          "position" : 15
        },
        {
          "token" : "邮",
          "start_offset" : 64,
          "end_offset" : 65,
          "type" : "<IDEOGRAPHIC>",
          "position" : 16
        },
        {
          "token" : "箱",
          "start_offset" : 65,
          "end_offset" : 66,
          "type" : "<IDEOGRAPHIC>",
          "position" : 17
        },
        {
          "token" : "xxxxxxx",
          "start_offset" : 67,
          "end_offset" : 74,
          "type" : "<ALPHANUM>",
          "position" : 18
        },
        {
          "token" : "xx.com",
          "start_offset" : 75,
          "end_offset" : 81,
          "type" : "<ALPHANUM>",
          "position" : 19
        },
        {
          "token" : "版",
          "start_offset" : 81,
          "end_offset" : 82,
          "type" : "<IDEOGRAPHIC>",
          "position" : 20
        },
        {
          "token" : "权",
          "start_offset" : 82,
          "end_offset" : 83,
          "type" : "<IDEOGRAPHIC>",
          "position" : 21
        },
        {
          "token" : "声",
          "start_offset" : 83,
          "end_offset" : 84,
          "type" : "<IDEOGRAPHIC>",
          "position" : 22
        },
        {
          "token" : "明",
          "start_offset" : 84,
          "end_offset" : 85,
          "type" : "<IDEOGRAPHIC>",
          "position" : 23
        },
        {
          "token" : "本",
          "start_offset" : 86,
          "end_offset" : 87,
          "type" : "<IDEOGRAPHIC>",
          "position" : 24
        },
        {
          "token" : "文",
          "start_offset" : 87,
          "end_offset" : 88,
          "type" : "<IDEOGRAPHIC>",
          "position" : 25
        },
        {
          "token" : "为",
          "start_offset" : 88,
          "end_offset" : 89,
          "type" : "<IDEOGRAPHIC>",
          "position" : 26
        },
        {
          "token" : "博",
          "start_offset" : 89,
          "end_offset" : 90,
          "type" : "<IDEOGRAPHIC>",
          "position" : 27
        },
        {
          "token" : "主",
          "start_offset" : 90,
          "end_offset" : 91,
          "type" : "<IDEOGRAPHIC>",
          "position" : 28
        },
        {
          "token" : "原",
          "start_offset" : 91,
          "end_offset" : 92,
          "type" : "<IDEOGRAPHIC>",
          "position" : 29
        },
        {
          "token" : "创",
          "start_offset" : 92,
          "end_offset" : 93,
          "type" : "<IDEOGRAPHIC>",
          "position" : 30
        },
        {
          "token" : "文",
          "start_offset" : 93,
          "end_offset" : 94,
          "type" : "<IDEOGRAPHIC>",
          "position" : 31
        },
        {
          "token" : "章",
          "start_offset" : 94,
          "end_offset" : 95,
          "type" : "<IDEOGRAPHIC>",
          "position" : 32
        },
        {
          "token" : "转",
          "start_offset" : 96,
          "end_offset" : 97,
          "type" : "<IDEOGRAPHIC>",
          "position" : 33
        },
        {
          "token" : "载",
          "start_offset" : 97,
          "end_offset" : 98,
          "type" : "<IDEOGRAPHIC>",
          "position" : 34
        },
        {
          "token" : "请",
          "start_offset" : 98,
          "end_offset" : 99,
          "type" : "<IDEOGRAPHIC>",
          "position" : 35
        },
        {
          "token" : "附",
          "start_offset" : 99,
          "end_offset" : 100,
          "type" : "<IDEOGRAPHIC>",
          "position" : 36
        },
        {
          "token" : "上",
          "start_offset" : 100,
          "end_offset" : 101,
          "type" : "<IDEOGRAPHIC>",
          "position" : 37
        },
        {
          "token" : "博",
          "start_offset" : 101,
          "end_offset" : 102,
          "type" : "<IDEOGRAPHIC>",
          "position" : 38
        },
        {
          "token" : "文",
          "start_offset" : 102,
          "end_offset" : 103,
          "type" : "<IDEOGRAPHIC>",
          "position" : 39
        },
        {
          "token" : "链",
          "start_offset" : 103,
          "end_offset" : 104,
          "type" : "<IDEOGRAPHIC>",
          "position" : 40
        },
        {
          "token" : "接",
          "start_offset" : 104,
          "end_offset" : 105,
          "type" : "<IDEOGRAPHIC>",
          "position" : 41
        }
      ]
    }
    

    无论如何,这个结果不符合我们的预期,因为把我们的邮箱和网址分的乱七八糟!那么针对这种情况,我们应该使用UAX URL电子邮件分词器(UAX RUL email tokenizer),该分词器将电子邮件和URL都作为单独的分词进行保留。

    Copy
    POST _analyze
    {
      "tokenizer": "uax_url_email",
      "text":"作者:张开来源:未知原文:https://www.cnblogs.com/Neeo/articles/10402742.html邮箱:xxxxxxx@xx.com版权声明:本文为博主原创文章,转载请附上博文链接!"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "作",
          "start_offset" : 0,
          "end_offset" : 1,
          "type" : "<IDEOGRAPHIC>",
          "position" : 0
        },
        {
          "token" : "者",
          "start_offset" : 1,
          "end_offset" : 2,
          "type" : "<IDEOGRAPHIC>",
          "position" : 1
        },
        {
          "token" : "张",
          "start_offset" : 3,
          "end_offset" : 4,
          "type" : "<IDEOGRAPHIC>",
          "position" : 2
        },
        {
          "token" : "开",
          "start_offset" : 4,
          "end_offset" : 5,
          "type" : "<IDEOGRAPHIC>",
          "position" : 3
        },
        {
          "token" : "来",
          "start_offset" : 5,
          "end_offset" : 6,
          "type" : "<IDEOGRAPHIC>",
          "position" : 4
        },
        {
          "token" : "源",
          "start_offset" : 6,
          "end_offset" : 7,
          "type" : "<IDEOGRAPHIC>",
          "position" : 5
        },
        {
          "token" : "未",
          "start_offset" : 8,
          "end_offset" : 9,
          "type" : "<IDEOGRAPHIC>",
          "position" : 6
        },
        {
          "token" : "知",
          "start_offset" : 9,
          "end_offset" : 10,
          "type" : "<IDEOGRAPHIC>",
          "position" : 7
        },
        {
          "token" : "原",
          "start_offset" : 10,
          "end_offset" : 11,
          "type" : "<IDEOGRAPHIC>",
          "position" : 8
        },
        {
          "token" : "文",
          "start_offset" : 11,
          "end_offset" : 12,
          "type" : "<IDEOGRAPHIC>",
          "position" : 9
        },
        {
          "token" : "https://www.cnblogs.com/Neeo/articles/10402742.html",
          "start_offset" : 13,
          "end_offset" : 64,
          "type" : "<URL>",
          "position" : 10
        },
        {
          "token" : "邮",
          "start_offset" : 64,
          "end_offset" : 65,
          "type" : "<IDEOGRAPHIC>",
          "position" : 11
        },
        {
          "token" : "箱",
          "start_offset" : 65,
          "end_offset" : 66,
          "type" : "<IDEOGRAPHIC>",
          "position" : 12
        },
        {
          "token" : "xxxxxxx@xx.com",
          "start_offset" : 67,
          "end_offset" : 81,
          "type" : "<EMAIL>",
          "position" : 13
        },
        {
          "token" : "版",
          "start_offset" : 81,
          "end_offset" : 82,
          "type" : "<IDEOGRAPHIC>",
          "position" : 14
        },
        {
          "token" : "权",
          "start_offset" : 82,
          "end_offset" : 83,
          "type" : "<IDEOGRAPHIC>",
          "position" : 15
        },
        {
          "token" : "声",
          "start_offset" : 83,
          "end_offset" : 84,
          "type" : "<IDEOGRAPHIC>",
          "position" : 16
        },
        {
          "token" : "明",
          "start_offset" : 84,
          "end_offset" : 85,
          "type" : "<IDEOGRAPHIC>",
          "position" : 17
        },
        {
          "token" : "本",
          "start_offset" : 86,
          "end_offset" : 87,
          "type" : "<IDEOGRAPHIC>",
          "position" : 18
        },
        {
          "token" : "文",
          "start_offset" : 87,
          "end_offset" : 88,
          "type" : "<IDEOGRAPHIC>",
          "position" : 19
        },
        {
          "token" : "为",
          "start_offset" : 88,
          "end_offset" : 89,
          "type" : "<IDEOGRAPHIC>",
          "position" : 20
        },
        {
          "token" : "博",
          "start_offset" : 89,
          "end_offset" : 90,
          "type" : "<IDEOGRAPHIC>",
          "position" : 21
        },
        {
          "token" : "主",
          "start_offset" : 90,
          "end_offset" : 91,
          "type" : "<IDEOGRAPHIC>",
          "position" : 22
        },
        {
          "token" : "原",
          "start_offset" : 91,
          "end_offset" : 92,
          "type" : "<IDEOGRAPHIC>",
          "position" : 23
        },
        {
          "token" : "创",
          "start_offset" : 92,
          "end_offset" : 93,
          "type" : "<IDEOGRAPHIC>",
          "position" : 24
        },
        {
          "token" : "文",
          "start_offset" : 93,
          "end_offset" : 94,
          "type" : "<IDEOGRAPHIC>",
          "position" : 25
        },
        {
          "token" : "章",
          "start_offset" : 94,
          "end_offset" : 95,
          "type" : "<IDEOGRAPHIC>",
          "position" : 26
        },
        {
          "token" : "转",
          "start_offset" : 96,
          "end_offset" : 97,
          "type" : "<IDEOGRAPHIC>",
          "position" : 27
        },
        {
          "token" : "载",
          "start_offset" : 97,
          "end_offset" : 98,
          "type" : "<IDEOGRAPHIC>",
          "position" : 28
        },
        {
          "token" : "请",
          "start_offset" : 98,
          "end_offset" : 99,
          "type" : "<IDEOGRAPHIC>",
          "position" : 29
        },
        {
          "token" : "附",
          "start_offset" : 99,
          "end_offset" : 100,
          "type" : "<IDEOGRAPHIC>",
          "position" : 30
        },
        {
          "token" : "上",
          "start_offset" : 100,
          "end_offset" : 101,
          "type" : "<IDEOGRAPHIC>",
          "position" : 31
        },
        {
          "token" : "博",
          "start_offset" : 101,
          "end_offset" : 102,
          "type" : "<IDEOGRAPHIC>",
          "position" : 32
        },
        {
          "token" : "文",
          "start_offset" : 102,
          "end_offset" : 103,
          "type" : "<IDEOGRAPHIC>",
          "position" : 33
        },
        {
          "token" : "链",
          "start_offset" : 103,
          "end_offset" : 104,
          "type" : "<IDEOGRAPHIC>",
          "position" : 34
        },
        {
          "token" : "接",
          "start_offset" : 104,
          "end_offset" : 105,
          "type" : "<IDEOGRAPHIC>",
          "position" : 35
        }
      ]
    }
    

    路径层次分词器:path hierarchy tokenizer

    路径层次分词器(path hierarchy tokenizer)允许以特定的方式索引文件系统的路径,这样在搜索时,共享同样路径的文件将被作为结果返回。

    Copy
    POST _analyze
    {
      "tokenizer": "path_hierarchy",
      "text":"/usr/local/python/python2.7"
    }
    

    返回结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "/usr",
          "start_offset" : 0,
          "end_offset" : 4,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "/usr/local",
          "start_offset" : 0,
          "end_offset" : 10,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "/usr/local/python",
          "start_offset" : 0,
          "end_offset" : 17,
          "type" : "word",
          "position" : 0
        },
        {
          "token" : "/usr/local/python/python2.7",
          "start_offset" : 0,
          "end_offset" : 27,
          "type" : "word",
          "position" : 0
        }
      ]
    }
    

    五、分词过滤器

    asticsearch内置很多(真是变态多啊!但一般用不到,美滋滋!!!)的分词过滤器。其中包含分词过滤器和字符过滤器。
    常见分词过滤器
    这里仅列举几个常见的分词过滤器(token filter)包括:

    • 标准分词过滤器(Standard Token Filter)在6.5.0版本弃用。此筛选器已被弃用,将在下一个主要版本中删除。在之前的版本中其实也没干啥,甚至在更老版本的Lucene中,它用于去除单词结尾的s字符,还有不必要的句点字符,但是现在, 连这些小功能都被其他的分词器和分词过滤器顺手干了,真可怜!
    • ASCII折叠分词过滤器(ASCII Folding Token Filter)将前127个ASCII字符(基本拉丁语的Unicode块)中不包含的字母、数字和符号Unicode字符转换为对应的ASCII字符(如果存在的话)。
    • 扁平图形分词过滤器(Flatten Graph Token Filter)接受任意图形标记流。例如由同义词图形标记过滤器生成的标记流,并将其展平为适合索引的单个线性标记链。这是一个有损的过程,因为单独的侧路径被压扁在彼此之上,但是如果在索引期间使用图形令牌流是必要的,因为Lucene索引当前不能表示图形。 出于这个原因,最好只在搜索时应用图形分析器,因为这样可以保留完整的图形结构,并为邻近查询提供正确的匹配。该功能在Lucene中为实验性功能。
    • 长度标记过滤器(Length Token Filter)会移除分词流中太长或者太短的标记,它是可配置的,我们可以在settings中设置。
    • 小写分词过滤器(Lowercase Token Filter)将分词规范化为小写,它通过language参数支持希腊语、爱尔兰语和土耳其语小写标记过滤器。
    • 大写分词过滤器(Uppercase Token Filter)将分词规范为大写。

    其余分词过滤器不一一列举。详情参见官网

    自定义分词过滤器

    接下来我们简单的来学习自定义两个分词过滤器。首先是长度分词过滤器。

    Copy
    PUT pattern_test3
    {
      "settings": {
        "analysis": {
          "filter": {
            "my_test_length":{
              "type":"length",
              "max":8,
              "min":2
            }
          }
        }
      }
    }
    

    上例中,我们自定义了一个长度过滤器,过滤掉长度大于8和小于2的分词。
    需要补充的是,max参数表示最大分词长度。默认为Integer.MAX_VALUE,就是2147483647(231?1),而min则表示最小长度,默认为0。

    Copy
    POST pattern_test3/_analyze
    {
      "tokenizer": "standard",
      "filter": ["my_test_length"],
      "text":"a Small word and a longerword"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "Small",
          "start_offset" : 2,
          "end_offset" : 7,
          "type" : "<ALPHANUM>",
          "position" : 1
        },
        {
          "token" : "word",
          "start_offset" : 8,
          "end_offset" : 12,
          "type" : "<ALPHANUM>",
          "position" : 2
        },
        {
          "token" : "and",
          "start_offset" : 13,
          "end_offset" : 16,
          "type" : "<ALPHANUM>",
          "position" : 3
        }
      ]
    }
    

    自定义小写分词过滤器

    自定义一个小写分词过滤器,过滤希腊文:

    Copy
    PUT lowercase_example
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "standard_lowercase_example": {
              "type": "custom",
              "tokenizer": "standard",
              "filter": ["lowercase"]
            },
            "greek_lowercase_example": {
              "type": "custom",
              "tokenizer": "standard",
              "filter": ["greek_lowercase"]
            }
          },
          "filter": {
            "greek_lowercase": {
              "type": "lowercase",
              "language": "greek"
            }
          }
        }
      }
    }
    

    过滤内容是:

    Copy
    POST lowercase_example/_analyze
    {
      "tokenizer": "standard",
      "filter": ["greek_lowercase"],
      "text":"?να φ?λτρο διακριτικο? τ?που πεζ? s ομαλοποιε? το κε?μενο διακριτικο? σε χαμηλ?τερη θ?κη"
    }
    

    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "ενα",
          "start_offset" : 0,
          "end_offset" : 3,
          "type" : "<ALPHANUM>",
          "position" : 0
        },
        {
          "token" : "φιλτρο",
          "start_offset" : 4,
          "end_offset" : 10,
          "type" : "<ALPHANUM>",
          "position" : 1
        },
        {
          "token" : "διακριτικου",
          "start_offset" : 11,
          "end_offset" : 22,
          "type" : "<ALPHANUM>",
          "position" : 2
        },
        {
          "token" : "τυπου",
          "start_offset" : 23,
          "end_offset" : 28,
          "type" : "<ALPHANUM>",
          "position" : 3
        },
        {
          "token" : "πεζα",
          "start_offset" : 29,
          "end_offset" : 33,
          "type" : "<ALPHANUM>",
          "position" : 4
        },
        {
          "token" : "s",
          "start_offset" : 34,
          "end_offset" : 35,
          "type" : "<ALPHANUM>",
          "position" : 5
        },
        {
          "token" : "ομαλοποιει",
          "start_offset" : 36,
          "end_offset" : 46,
          "type" : "<ALPHANUM>",
          "position" : 6
        },
        {
          "token" : "το",
          "start_offset" : 47,
          "end_offset" : 49,
          "type" : "<ALPHANUM>",
          "position" : 7
        },
        {
          "token" : "κειμενο",
          "start_offset" : 50,
          "end_offset" : 57,
          "type" : "<ALPHANUM>",
          "position" : 8
        },
        {
          "token" : "διακριτικου",
          "start_offset" : 58,
          "end_offset" : 69,
          "type" : "<ALPHANUM>",
          "position" : 9
        },
        {
          "token" : "σε",
          "start_offset" : 70,
          "end_offset" : 72,
          "type" : "<ALPHANUM>",
          "position" : 10
        },
        {
          "token" : "χαμηλοτερη",
          "start_offset" : 73,
          "end_offset" : 83,
          "type" : "<ALPHANUM>",
          "position" : 11
        },
        {
          "token" : "θηκη",
          "start_offset" : 84,
          "end_offset" : 88,
          "type" : "<ALPHANUM>",
          "position" : 12
        }
      ]
    }
    

    多个分词过滤器

    除此之外,我们可以使用多个分词过滤器。例如我们在使用长度过滤器时,可以同时使用小写分词过滤器或者更多。

    Copy
    POST _analyze
    {
      "tokenizer": "standard",
      "filter": ["length","lowercase"],
      "text":"a Small word and a longerword"
    }
    

    上例中,我们用列表来管理多个分词过滤器。
    结果如下:

    Copy
    {
      "tokens" : [
        {
          "token" : "a",
          "start_offset" : 0,
          "end_offset" : 1,
          "type" : "<ALPHANUM>",
          "position" : 0
        },
        {
          "token" : "small",
          "start_offset" : 2,
          "end_offset" : 7,
          "type" : "<ALPHANUM>",
          "position" : 1
        },
        {
          "token" : "word",
          "start_offset" : 8,
          "end_offset" : 12,
          "type" : "<ALPHANUM>",
          "position" : 2
        },
        {
          "token" : "and",
          "start_offset" : 13,
          "end_offset" : 16,
          "type" : "<ALPHANUM>",
          "position" : 3
        },
        {
          "token" : "a",
          "start_offset" : 17,
          "end_offset" : 18,
          "type" : "<ALPHANUM>",
          "position" : 4
        },
        {
          "token" : "longerword",
          "start_offset" : 19,
          "end_offset" : 29,
          "type" : "<ALPHANUM>",
          "position" : 5
        }
      ]
    }
    
  • 相关阅读:
    C#代码常用技巧
    MVC
    json类型
    android 上传二进制文件的两种方式
    BroadcastReceiver 使用goAsync 执行异步操作
    android组件间通信又一种方式
    Android BLE基础框架使用详解
    Android BLE设备蓝牙通信框架BluetoothKit
    android studio ndk开发总结
    jni c基础总结
  • 原文地址:https://www.cnblogs.com/bubu99/p/13593831.html
Copyright © 2011-2022 走看看