zoukankan      html  css  js  c++  java
  • P3803 FFT求多项式系数

    P3803 FFT求多项式系数

    传送门:https://www.luogu.org/problemnew/show/P3803

    题意:

    这是一道FFT模板题,求多项式系数

    题解:

    对a和b的系数求一个fft,转换为点乘式后

    O(n)扫一遍直接算系数即可

    对于多项式相加

    (egin{array}{l}{A(x)=left(x_{0}, y_{0} ight),left(x_{1}, y_{1} ight) ldotsleft(x_{n}, y_{n} ight)} \ {B(x)=left(x_{0}, y_{0}^{prime} ight),left(x_{1}, y_{1}^{prime} ight) ldots .left(x_{n}, y_{n} ight)}end{array})

    (A(x)+B(x)=left(x_{0}, y_{0}+y_{0}^{prime} ight),left(x_{1}, y_{1}+y_{1}^{prime} ight)left(x_{n}, y_{n}+y_{n}^{prime} ight))

    对于多项式相乘,我们需要补上一些项使得最后乘的的系数个数为2n+1

    (egin{array}{l}{A(x)=left(x_{0}, y_{0} ight),left(x_{1}, y_{1} ight) ldotsleft(x_{2 n}, y_{2 n} ight)} \ {B(x)=left(x_{0}, y_{0}^{prime} ight),left(x_{1}, y_{1}^{prime} ight) ldots .left(x_{2 n}, y_{2 n} ight)}end{array})

    (A(x) B(x)=left(x_{0}, y_{0} y_{0}^{prime} ight),left(x_{1}, y_{1} y_{1}^{prime} ight)left(x_{2 n}, y_{2 n} y_{2 n}^{prime} ight))

    代码:

    #include <set>
    #include <map>
    #include <cmath>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    typedef long long LL;
    typedef pair<int, int> pii;
    typedef unsigned long long uLL;
    #define ls rt<<1
    #define rs rt<<1|1
    #define lson l,mid,rt<<1
    #define rson mid+1,r,rt<<1|1
    #define bug printf("*********
    ")
    #define FIN freopen("input.txt","r",stdin);
    #define FON freopen("output.txt","w+",stdout);
    #define IO ios::sync_with_stdio(false),cin.tie(0)
    #define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]
    "
    #define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]
    "
    #define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]
    "
    const int maxn = 1e7 + 5;
    const int INF = 0x3f3f3f3f;
    const int mod = 1e9 + 7;
    const double Pi = acos(-1.0);
    LL quick_pow(LL x, LL y) {
        LL ans = 1;
        while(y) {
            if(y & 1) {
                ans = ans * x % mod;
            } x = x * x % mod;
            y >>= 1;
        } return ans;
    }
    struct complex {
        double x, y;
        complex(double xx = 0, double yy = 0) {
            x = xx, y = yy;
        }
    } a[maxn], b[maxn];
    complex operator + (complex a, complex b) {
        return complex(a.x + b.x, a.y + b.y);
    }
    complex operator - (complex a, complex b) {
        return complex(a.x - b.x, a.y - b.y);
    }
    complex operator * (complex a, complex b) {
        return complex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
    }
    
    
    int n, m;
    int l, r[maxn];
    int limit = 1;
    void fft(complex *A, int type) {
        for(int i = 0; i < limit; i++) {
            if(i < r[i]) swap(A[i], A[r[i]]);
        }
        for(int mid = 1; mid < limit; mid <<= 1) {
            complex Wn(cos(Pi / mid), type * sin(Pi / mid));
            for(int R = mid << 1, j = 0; j < limit; j += R) {
                complex w(1, 0);
                for(int k = 0; k < mid; k++, w = w * Wn) {
                    complex x = A[j + k], y = w * A[j + mid + k];
                    A[j + k] = x + y;
                    A[j + mid + k] = x - y;
                }
            }
        }
    }
    int main() {
    #ifndef ONLINE_JUDGE
        FIN
    #endif
        scanf("%d%d", &n, &m);
        for(int i = 0; i <= n; i++) scanf("%lf", &a[i].x);
        for(int i = 0; i <= m; i++) scanf("%lf", &b[i].x);
        while(limit <= n + m) limit <<= 1, l++;
        for(int i = 0; i < limit; i++) {
            r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
        }
        fft(a, 1);
        fft(b, 1);
        for(int i = 0; i <= limit; i++) {
            a[i] = a[i] * b[i];
        }
        fft(a, -1);
        for(int i = 0; i <= n + m; i++) {
            printf("%d ", (int)(a[i].x / limit + 0.5));
        }
        printf("
    ");
        return 0;
    }
    
    每一个不曾刷题的日子 都是对生命的辜负 从弱小到强大,需要一段时间的沉淀,就是现在了 ~buerdepepeqi
  • 相关阅读:
    javascript,函数声明和函数表达式
    javascript,小数值舍入操作方法:ceil()、floor()、round()
    javascript,子字符串操作方法:Slice()、Substr()、Substring()的区别
    javascript,第一个基于node.js的Http服务
    javascript,创建对象的3种方法
    MFC学习笔记2——MFC和Win32
    Qt下 QString转char*
    [转载] Qt程序在Windows下的mingw发布
    VC 获取当前时间
    MFC 对话框设计问题(控件的使用)
  • 原文地址:https://www.cnblogs.com/buerdepepeqi/p/11235377.html
Copyright © 2011-2022 走看看