zoukankan      html  css  js  c++  java
  • 李代数E8 的根系 python绘图

    安装前需安装依赖:(针对Centos7)

    yum install -y cairo
    pip install cairocffi

    源代码:https://github.com/neozhaoliang/pywonderland/blob/master/src/misc/e8.py

    # -*- coding: utf-8 -*-
    """
    ~~~~~~~~~~~~~~
    The E8 picture
    ~~~~~~~~~~~~~~
    This script draws the picture of E8 projected to its Coxeter plane.
    For a detailed discussion of the math see Humphreys's book
        "Reflection Groups and Coxeter Groups", section 17, chapter 3.
    """
    from itertools import product, combinations
    import cairocffi as cairo
    import numpy as np
    
    
    COLORS = [(0.894, 0.102, 0.11),
              (0.216, 0.494, 0.72),
              (0.302, 0.686, 0.29),
              (0.596, 0.306, 0.639),
              (1.0, 0.5, 0),
              (1.0, 1.0, 0.2),
              (0.65, 0.337, 0.157),
              (0.97, 0.506, 0.75)]
    
    
    # --- step one: compute all roots and edges ---
    
    # There are 240 roots in the root system,
    # mutiply them by a factor 2 to be handy for computations.
    roots = []
    
    # Roots of the form (+-1, +-1, 0, 0, 0, 0, 0, 0),
    # signs can be chosen independently and the two non-zeros can be anywhere.
    for i, j in combinations(range(8), 2):
        for x, y in product([-2, 2], repeat=2):
            v = np.zeros(8)
            v[i] = x
            v[j] = y
            roots.append(v)
    
    # Roots of the form 1/2 * (+-1, +-1, ..., +-1), signs can be chosen
    # indenpendently except that there must be an even numer of -1s.
    for v in product([-1, 1], repeat=8):
        if sum(v) % 4 == 0:
            roots.append(v)
    roots = np.array(roots).astype(np.int)
    
    
    # Connect a root to its nearest neighbors,
    # two roots are connected if and only if they form an angle of pi/3.
    edges = []
    for i, r in enumerate(roots):
        for j, s in enumerate(roots[i+1:], i+1):
            if np.sum((r - s)**2) == 8:
                edges.append([i, j])
    
    
    # --- Step two: compute a basis of the Coxeter plane ---
    
    # A set of simple roots listed by rows of 'delta'
    delta = np.array([[1, -1, 0, 0, 0, 0, 0, 0],
                      [0, 1, -1, 0, 0, 0, 0, 0],
                      [0, 0, 1, -1, 0, 0, 0, 0],
                      [0, 0, 0, 1, -1, 0, 0, 0],
                      [0, 0, 0, 0, 1, -1, 0, 0],
                      [0, 0, 0, 0, 0, 1, 1, 0],
                      [-.5, -.5, -.5, -.5, -.5, -.5, -.5, -.5],
                      [0, 0, 0, 0, 0, 1, -1, 0]])
    
    # Dynkin diagram of E8:
    # 1---2---3---4---5---6---7
    #                 |
    #                 8
    # where vertex i is the i-th simple root.
    
    # The cartan matrix:
    cartan = np.dot(delta, delta.transpose())
    
    # Now we split the simple roots into two disjoint sets I and J
    # such that the simple roots in each set are pairwise orthogonal.
    # It's obvious to see how to find such a partition given the
    # Dynkin graph above: I = [1, 3, 5, 7] and J = [2, 4, 6, 8],
    # since roots are not connected by an edge if and only if they are orthogonal.
    # Then a basis of the Coxeter plane is given by
    # u = sum (c[i] * delta[i]) for i in I,
    # v = sum (c[j] * delta[j]) for j in J,
    # where c is an eigenvector for the minimal
    # eigenvalue of the Cartan matrix.
    eigenvals, eigenvecs = np.linalg.eigh(cartan)
    
    # The eigenvalues returned by eigh() are in ascending order
    # and the eigenvectors are listed by columns.
    c = eigenvecs[:, 0]
    u = np.sum([c[i] * delta[i] for i in [0, 2, 4, 6]], axis=0)
    v = np.sum([c[j] * delta[j] for j in [1, 3, 5, 7]], axis=0)
    
    # Gram-Schimdt u, v and normalize them to unit vectors.
    u /= np.linalg.norm(u)
    v = v - np.dot(u, v) * u
    v /= np.linalg.norm(v)
    
    
    # --- step three: project to the Coxeter plane ---
    roots_2d = [(np.dot(u, x), np.dot(v, x)) for x in roots]
    
    # Sort these projected vertices by their modulus in the coxter plane,
    # every successive 30 vertices form one ring in the resulting pattern,
    # assign these 30 vertices a same color.
    vertex_colors = np.zeros((len(roots), 3))
    modulus = np.linalg.norm(roots_2d, axis=1)
    ind_array = modulus.argsort()
    for i in range(8):
        for j in ind_array[30*i: 30*(i+1)]:
            vertex_colors[j] = COLORS[i]
    
    
    # --- step four: render to png image ---
    image_size = 600
    # The axis lie between [-extent, extent] x [-extent, extent]
    extent = 2.4
    linewidth = 0.0018
    markersize = 0.05
    
    surface = cairo.ImageSurface(cairo.FORMAT_RGB24, image_size, image_size)
    ctx = cairo.Context(surface)
    ctx.scale(image_size/(extent*2.0), -image_size/(extent*2.0))
    ctx.translate(extent, -extent)
    ctx.set_source_rgb(1, 1, 1)
    ctx.paint()
    
    for i, j in edges:
        x1, y1 = roots_2d[i]
        x2, y2 = roots_2d[j]
        ctx.set_source_rgb(0.2, 0.2, 0.2)
        ctx.set_line_width(linewidth)
        ctx.move_to(x1, y1)
        ctx.line_to(x2, y2)
        ctx.stroke()
    
    for i in range(len(roots)):
        x, y = roots_2d[i]
        color = vertex_colors[i]
        grad = cairo.RadialGradient(x, y, 0.0001, x, y, markersize)
        grad.add_color_stop_rgb(0, *color)
        grad.add_color_stop_rgb(1, *color/2)
        ctx.set_source(grad)
        ctx.arc(x, y, markersize, 0, 2*np.pi)
        ctx.fill()
    
    surface.write_to_png('E8.png')

    结果:

  • 相关阅读:
    Junit单元测试学习笔记(一)
    perl 函数参数传递与返回值(一)
    Oracle blob字段类型 文件读写实例
    测试沙龙的一些感悟
    常用排序算法选择排序
    perl 哈希(hash)学习笔记(一)
    perl 自定义包/模块的使用(正则表达式匹配email地址和ip)
    常用排序算法冒泡排序
    如何使用excel计算工龄
    畅想(3)打通编程的任督二脉 人工智能
  • 原文地址:https://www.cnblogs.com/bugutian/p/11098325.html
Copyright © 2011-2022 走看看