zoukankan      html  css  js  c++  java
  • F

    F - Almost Sorted Array 

     
    We are all familiar with sorting algorithms: quick sort, merge sort, heap sort, insertion sort, selection sort, bubble sort, etc. But sometimes it is an overkill to use these algorithms for an almost sorted array. 
     
    We say an array is sorted if its elements are in non-decreasing order or non-increasing order. We say an array is almost sorted if we can remove exactly one element from it, and the remaining array is sorted. Now you are given an array a1,a2,,ana1,a2,…,an, is it almost sorted?

    InputThe first line contains an integer TT indicating the total number of test cases. Each test case starts with an integer nn in one line, then one line with nn integers a1,a2,,ana1,a2,…,an. 

    1T20001≤T≤2000 
    2n1052≤n≤105 
    1ai1051≤ai≤105 
    There are at most 20 test cases with n>1000n>1000.
    OutputFor each test case, please output "`YES`" if it is almost sorted. Otherwise, output "`NO`" (both without quotes).Sample Input

    3
    3
    2 1 7
    3
    3 2 1
    5
    3 1 4 1 5

    Sample Output

    YES
    YES
    NO

    //需要用到的算法:最长递增子序列
    
    
    #include <iostream>
    #include <cstdio>
    #include <memory.h>
    #include <algorithm>
    
    #define INF 0x3f3f3f
    
    using namespace std;
    
    const int MAXN = 1e5 + 7;
    
    int dp[MAXN];
    int a[MAXN];
    int b[MAXN];
    
    int main() {
        int T;
        cin >> T;
        while(T--) {
            int n;
            scanf("%d", &n);
            memset(dp, INF, sizeof dp);
            for(int i = 0; i < n; i++) {
                scanf("%d", &a[i]);
                b[n - i - 1] = a[i];
            }
            //递增
            //依次遍历,将当前元素插入dp数字中适当的位置
            for(int i = 0; i < n; i++) {
                *upper_bound(dp, dp + n, a[i]) = a[i];
            }
            //求出最长递增子序列的长度
            int cnt1 = lower_bound(dp, dp + n, INF) - dp;
            //递减
            memset(dp, INF, sizeof dp);
            for(int i = 0; i < n; i++) {
                *upper_bound(dp, dp + n, b[i]) = b[i];
            }
            int cnt2 = lower_bound(dp, dp + n, INF) - dp;
            //如果最后递增和递减的长度其中有一个大于或等于(n-1)的话,就输出YES,否则输出NO
            if(cnt1 >= (n - 1) || cnt2 >= (n - 1)) {
                printf("YES
    ");
            } else {
                printf("NO
    ");
            }
        }
        return 0;
    }


  • 相关阅读:
    Ansible工作架构和原理
    基于WSAAsyncSelect模型的两台计算机之间的通信
    基于Select模型通信程序的编写,编译和执行
    Windows API窗口绘图程序设计
    常用自动化运维工具
    简单的程序发布流程
    TCPIP协议编程:基于UDP协议的局域网聊天工具的研发
    Python 遗传算法实现字符串
    python3 井字棋 GUI
    Docker 容器的跨主机连接
  • 原文地址:https://www.cnblogs.com/buhuiflydepig/p/10942391.html
Copyright © 2011-2022 走看看