zoukankan      html  css  js  c++  java
  • 洛谷 P2680 运输计划 解题报告

    P2680 运输计划

    题目背景

    公元2044年,人类进入了宇宙纪元。

    题目描述

    公元2044年,人类进入了宇宙纪元。

    (L)国有(n)个星球,还有(n-1)条双向航道,每条航道建立在两个星球之间,这(n−1)条航道连通了(L)国的所有星球。

    (P)掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从(u_i)号星球沿最快的宇航路径飞行到(v_i)号星球去。显然,飞船驶过一条航道是需要时间的,对于航道(j),任意飞船驶过它所花费的时间为(t_j),并且任意两艘飞船之间不会产生任何干扰。

    为了鼓励科技创新,(L)国国王同意小(P)的物流公司参与(L)国的航道建设,即允许小(P)把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。

    在虫洞的建设完成前小(P)的物流公司就预接了(m)个运输计划。在虫洞建设完成后,这(m)个运输计划会同时开始,所有飞船一起出发。当这(m)个运输计划都完成时,小(P)的物流公司的阶段性工作就完成了。

    如果小(P)可以自由选择将哪一条航道改造成虫洞, 试求出小(P)的物流公司完成阶段性工作所需要的最短时间是多少?

    输入输出格式

    输入格式:

    第一行包括两个正整数(n, m),表示(L)国中星球的数量及小(P)公司预接的运输计划的数量,星球从1到(n)编号。

    接下来(n-1)行描述航道的建设情况,其中第(i)行包含三个整数(a_i, b_i)(t_i)t ,表示第(i)条双向航道修建在(a_i)(b_i)两个星球之间,任意飞船驶过它所花费的时间为 (t_i) 。数据保证(1≤a _i ,b_i ≤n)(0≤t_i≤1000)

    接下来(m)行描述运输计划的情况,其中第(j)行包含两个正整数(u_j)(v_j) ,表示第(j)个运输计划是从(u_j)号星球飞往(v_j)号星球。数据保证(1≤u_i,v_i≤n)

    输出格式:

    一个整数,表示小(P)的物流公司完成阶段性工作所需要的最短时间。

    说明:


    首先简化一下问题模型:对于询问的m条链中,删去一条边,使最大链最小

    妥妥的二分答案了,但是我做的时候并没有想简化模型,自然也没有想到二分答案,只是想到了贪心倍增的做法但是太难写,我估计写不出来。

    下面说说二分答案。我们二分最大链长(l)

    对于链长小于等于(l)的,我们不管它。
    对于链长大于(l)的,我们得确保删去的那条边在每条这样的链上,换而言之,我们要统计当前每条边的经历的链数。

    我们找到合法的最大边,看看减去它后是否能使所有链长小于(l)

    那么现在还有两个问题,如何找到链如何统计每条边经历的链数

    找到链即先预处理每条链的最近公共祖先,存储为三元组并带上链长。可以用(tarjan)直接(O(n))离线处理了

    统计链数时,我们发现也是离线操作而且没有修改。直接树上差分即可。

    树上差分:思想与链上差分差不多,对三元组((f,v1,v2))((f)是后面两个祖先),维护(f)的差分数组减去2,(v1,v2)的加上1。自下往上统计前缀和即是边的经历次数。


    code:

    #include <cstdio>
    #include <cstring>
    int max(int x,int y){return x>y?x:y;}
    const int N=300010;
    int n,m;
    int read()
    {
        char c=getchar();int x=0;
        while(c<'0'||c>'9') c=getchar();
        while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
        return x;
    }
    struct Edge{int to,next,w;}edge[N<<1];
    struct node{int to,next;}lca[N<<1];
    int head[N],cnt=0,headl[N],cntl=0,dis[N],used[N],f[N],l=0,r=0;
    void add(int u,int v,int w){edge[++cnt].next=head[u];edge[cnt].to=v;edge[cnt].w=w;head[u]=cnt;}
    void addl(int u,int v){lca[++cntl].next=headl[u];lca[cntl].to=v;headl[u]=cntl;}
    void dfs(int now)
    {
        used[now]=1;
        for(int i=head[now];i;i=edge[i].next)
        {
            int v=edge[i].to,w=edge[i].w;
            if(!used[v])
            {
                dis[v]=dis[now]+w;
                dfs(v);
            }
        }
    }
    int find(int x){return f[x]=f[x]==x?x:find(f[x]);}
    void merge(int x,int y){f[find(y)]=find(x);}
    struct lc{int v[2],w,next;}d[N];int headlc[N],cntlc=0;
    void addlc(int u,int w,int v1,int v2){d[++cntlc].w=w;d[cntlc].v[0]=v1;d[cntlc].v[1]=v2;d[cntlc].next=headlc[u];headlc[u]=cntlc;}
    void LCA(int now)
    {
        used[now]=1;
        for(int i=head[now];i;i=edge[i].next)
        {
            int v=edge[i].to;
            if(!used[v])
            {
                used[v]=1;
                LCA(v);
                merge(now,v);
            }
        }
        for(int i=headl[now];i;i=lca[i].next)
        {
            int v=lca[i].to;
            if(used[v])
            {
                int f0=find(v);
                int w=dis[v]-dis[f0]+dis[now]-dis[f0];
                r=max(r,w);
                addlc(f0,w,v,now);
            }
        }
    }
    void init()
    {
        dfs(1);//预处理两点间长度
        int a,b;
        for(int i=1;i<=m;i++)
        {
            a=read(),b=read();
            addl(a,b);
            addl(b,a);
        }
        memset(used,0,sizeof(used));
        for(int i=1;i<=n;i++) f[i]=i;
        LCA(1);//两点间距离及最近公共祖先
    }
    int p_d[N],cntline=0,sum[N],m_max=0,m_maxl=0;
    void dfs0(int now,int dist)
    {
        used[now]=1;
        for(int i=head[now];i;i=edge[i].next)
        {
            int v=edge[i].to,w=edge[i].w;
            if(!used[v])
            {
                dfs0(v,w);
                sum[now]+=sum[v];
            }
        }
        sum[now]+=p_d[now];
        if(sum[now]==cntline)
            m_max=max(m_max,dist);
    }
    bool check(int c)
    {
        memset(p_d,0,sizeof(p_d));
        cntline=0,m_max=0,m_maxl=0;
        for(int i=1;i<=n;i++)
            for(int j=headlc[i];j;j=d[j].next)
                if(d[j].w>c)
                {
                    p_d[i]-=2;
                    p_d[d[j].v[0]]++;
                    p_d[d[j].v[1]]++;
                    m_maxl=max(m_maxl,d[j].w);
                    cntline++;
                }
        memset(used,0,sizeof(used));
        memset(sum,0,sizeof(sum));
        dfs0(1,0);
        return m_max+c>=m_maxl;
    }
    int main()
    {
        n=read(),m=read();
        int u,v,w;
        for(int i=1;i<n;i++)
        {
            u=read(),v=read(),w=read();
            l=max(l,w);
            add(u,v,w);
            add(v,u,w);
        }
        l=r-l;
        init();
        while(l<r)
        {
            int mid=l+r>>1;
            if(check(mid))
                r=mid;
            else
                l=mid+1;
        }
        printf("%d
    ",l);
        return 0;
    }
    
    

    其实这个代码(N)改成450,000再吸一波氧才能过。但我始终没弄清楚到底(N)开300,000到底是哪里(RE)了,有哪位大哥发现了评论一下呗~

    2018.6.7

  • 相关阅读:
    Mysql 设置变量的几种方式
    Mysql Alter table 操作
    Truncate有外键约束的表
    Mysql ESCAPE 用法
    Jquery checkbox operation
    Mysql 根据URL获取顶级域名
    MySQL分区表操作
    TIB工作室动态今后将发布在 http://www.automationqa.com/ , 敬请关注!
    TestPartner资源列表
    如何开始学习一个自动化测试工具?
  • 原文地址:https://www.cnblogs.com/butterflydew/p/9149430.html
Copyright © 2011-2022 走看看