zoukankan      html  css  js  c++  java
  • 图像质量评价和视频质量评价(IQA/VQA)

    python代码实现地址

    1 IQA/VQA(image quality assessment/video quality assessment)

    1.FR(全参考,Full Reference)
    2.RR(半参考,Reduced Reference)
    3.NR(无参考,No Reference/Blind)
    

    datasets:LIVE/CSIQ/TIB2013 etc...

    2 distortions(失真类型)

    来源:capturing, compression, transmission, reconstruction, displaying etc
    
    1.block artifacts(块效应,deblocking filter)
    2.ringing effect(振铃效应)
    3.mosquito noise(蚊式噪声)
    4.blur(模糊)
    etc...
    


    video-compression-artifacts

    3 subjective methods

    1.MOS(Mean Opinion Score)
        Single Stimulus Methods
    2.DMOS(Differential Mean Opinion Score)
        Double Stimulus Methods
    

    4 objective methods

    4.1 evaluation metrics

    1.LCC(Linear Correlation Coefficient/Pearson Correlation Coefficient)
    2.SROCC(Spearman Rank Order Correlation Coefficient )
    3.KROCC(Kendall Rank Order Correlation Coefficient)
    4.RMSE(Root Mean Square Error)
    5.OR(Outlier ratio)
    

    4.2 FR

    1.MSE
    2.PSNR
    3.SSIM,MS-SSIM
    4.VIF(visual information fidelity)
    5.JND(Just Noticeable Difference)
    6.VMAF(Visual Multimethod Assessment Fusion)
    7.FSIM
    8.VQM(Video qualitiy metrics)
    

    4.3 NR(blind image quality assessment)

    traditional

    1.基于特定失真类型:
        1.1:图像模糊(blur)
            paper:A no-reference perceptual blur metric
        1.2:噪声(Noise)
            paper:A fast method for image noise estimation using laplacian operator and adaptive edge detection
        1.3:JPEG2k(块效应,block artifacts)
            paper:Using edge direction information for measuring blocking artifacts of images
    
    2.BIQI
        paper:A Two-Step Framework for Constructing Blind Image Quality Indices
        ideas:
            1.estimates the presence of a set of distortions in the image
            2.evaluates the quality of the image along each of these distortions
    
    3.DIIVINE
        paper:Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality
        ideas:
            1.2-stage framework involving distortion identification followed by
                   distortion-specific quality assessment
            2.Statistical Model for Wavelet Coefficients
    
    4.BLINDS-II:
        paper:Blind Image Quality Assessment:A Natural Scene Statistics Approach in the DCT Domain
        ideas:
            1.DCT domain:block DCT coefficients(estimate GGD parameters)
            2.a simple Bayesian inference model to predict image quality scores
    
    5.BRISQUE
        paper:No-Reference Image Quality Assessmentin the Spatial Domain
        ideas:
            1.MSCN(mean subtracted contrast normalized coefficients)
            2.NSS(natural scene statistics):GGD(generalized Gaussian distribution),
                    AGGD(asymmetric generalized Gaussian distribution)
            3.GGD,AGGD parameters estimation,concat feature vector,train SVM
    
    
    6.NIQE
        paper:Making a ‘Completely Blind’ Image Quality Analyzer
        ideas:
            1.opinion unware
            2.patch selection:The variance field
            3.MGD(Multivariate Gaussian distribution):directly calculate score
    
    7.PIQE
        paper:BLIND IMAGE QUALITY EVALUATION USING PERCEPTION BASED FEATURES
        ideas:
            1. label block as uniform or spatially active
            2. blocks are analysed for two type of distortion,namely,noticeable distortion and additive white noise
            3. quantify distortion using block variance
    
    
    视频质量评价可分为像素域(pixel domain)和压缩域(compression domain)
    6.VIIDEO(for video,pixel field)
        paper:A Completely Blind Video Integrity Oracle
        ideas:
            1.Spatial Domain Natural Video Statistics: analyse local statistics of frame
                differences  of videos
            2.Compute low pass filtered frame difference coefficients
    
    7.compression domain
        paper:Research on No-Reference Video Quality Evaluation Algorithm Based on H.264
    

    deep learning

    1.Le Kang 2014
        paper:Convolutional Neural Networks for No-Reference Image Quality Assessment
        ideas:
            1.Taking image patches as input, the CNN works in the spatial domain without using
                hand-crafted features that are employed by most previous methods.
    

    1

    2.DIQI
    paper:Deep Learning Network For Blind Image Quality Assessment
    ideas:
        1.RGB2YIQ
        2.sparse autoencoder is adopted to pre-train each layer(L-BFGS)
        3.fine-tune the DNN
    

    3.DIQA:
    paper:Deep CNN-Based Blind Image Quality Predictor
    ideas:
        1.in objective distortion part, a pixelwise objective error map is predicted
        using the CNN model.
        2.in HVS-related part, model further learns the human visual perception behavior.
    

    4.DeepBIQ
        paper:On the Use of Deep Learning for Blind Image Quality Assessment
        ideas:
            1.estimates the image quality by average-pooling the scores predicted on multiple
                sub-regions of the original image
            2.fine-tuned for category-based image quality assessment.
    

    5.RankIQA:
        paper:RankIQA: Learning from Rankings for No-reference Image Quality Assessment
        ideas:
            1.Siamese Network
            2.rank score
    

    6.WaDIQaM-FR/NR
    paper:Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
    ideas:
        1.Patch weight estimate&Patch quality estimate
    


    7.VSFA
    paper:Quality Assessment of In-the-Wild Videos
    ideas:
        1.For content-dependency, extract features from a pre-trained image classification neural network. 
        2.For temporal-memory effects, long-term dependencies, especially the temporal hysteresis, are integrated into the network with a gated recurrent unit and a subjectively-inspired temporal pooling layer.
    

    5 references

    Laboratory for Image & Video Engineering
    blind image quality tool box
    IQA research
    tensorflow2 DIQA
    BRISQUE opencv3
    scikit-video
    IQA/VQA summary in ZHIHU
    无参考视频质量方法研究--林翔宇
    所有论文地址

  • 相关阅读:
    【IDEA】IDEA自定义注解无法自动识别入参和出参
    vue脚手架安装成功,但依然提示'vue' 不是内部或外部命令,也不是可运行的程序 或批处理文件。解决方案
    小程序怎么将input宽输入字母全部转大写字母
    微信小程序van-popup左右弹窗无法显示白色背景
    vscode中实现滚轮缩放代码
    element-ui监听el-dialog关闭事件
    测试人必看的5本好书,没看过你就吃亏啦~
    解决Access在Windows7下数据源的配置问题(32位)
    微软Win10补丁KB5005565更新后打印机连接不上(0x0000011b)
    Windows设置共享文件夹无法访问问题
  • 原文地址:https://www.cnblogs.com/buyizhiyou/p/12090605.html
Copyright © 2011-2022 走看看