zoukankan      html  css  js  c++  java
  • 谈一谈linux下线程池

    什么是线程池:
        首先,顾名思义,就是把一堆开辟好的线程放在一个池子里统一管理,就是一个线程池。

      其次,为什么要用线程池,难道来一个请求给它申请一个线程,请求处理完了释放线程不行么?也行,但是如果创建线程和销毁线程的时间比线程处理请求的时间长,而且请求很多的情况下,我们的CPU资源都浪费在了创建和销毁线程上了,所以这种方法的效率比较低,于是,我们可以将若干已经创建完成的线程放在一起统一管理,如果来了一个请求,我们从线程池中取出一个线程来处理,处理完了放回池内等待下一个任务,线程池的好处是避免了繁琐的创建和结束线程的时间,有效的利用了CPU资源。

      按照我的理解,线程池的作用和双缓冲的作用类似,可以完成任务处理的“鱼贯”动作。

      最后,如何才能创建一个线程池的模型呢,一般需要以下三个参与者:

        1、线程池结构,它负责管理多个线程并提供任务队列的接口

        2、工作线程,它们负责处理任务

        3、任务队列,存放待处理的任务

      有了三个参与者,下一个问题就是怎么使线程池安全有序的工作,可以使用POSIX中的信号量、互斥锁和条件变量等同步手段。有了这些认识,我们就可以创建自己的线程池

     代码示例如下:

    
    
    #include <stdlib.h>
    #include <pthread.h>
    #include <unistd.h>
    #include <assert.h>
    #include <stdio.h>
    #include <string.h>
    #include <signal.h>
    #include <errno.h>
    #include "threadpool.h"
    
    #define DEFAULT_TIME 10                 /*10s检测一次*/
    #define MIN_WAIT_TASK_NUM 10            /*如果queue_size > MIN_WAIT_TASK_NUM 添加新的线程到线程池*/ 
    #define DEFAULT_THREAD_VARY 10          /*每次创建和销毁线程的个数*/
    #define true 1
    #define false 0
    
    typedef struct
    {
        void *(*function)(void *);          /*函数指针,回调函数*/
        void *arg;                          /*上面函数的参数*/
    } threadpool_task_t;                    /*任务结构体*/
    
    struct threadpool_t
    {
        pthread_mutex_t lock;               /*用于锁住当前这个结构体体taskpoll*/    
        pthread_mutex_t thread_counter;     /*记录忙状态线程个数*/
        pthread_cond_t queue_not_full;      /*当任务队列满时,添加任 务的线程阻塞,等待此条件变量*/
        pthread_cond_t queue_not_empty;     /*任务队列里不为空时,通知等待任务的线程*/
        pthread_t *threads;                 /*保存工作线程tid的数组*/
        pthread_t adjust_tid;               /*管理线程tid*/
        threadpool_task_t *task_queue;      /*任务队列*/
        int min_thr_num;                    /*线程组内默认最小线程数*/
        int max_thr_num;                    /*线程组内默认最大线程数*/
        int live_thr_num;                   /*当前存活线程个数*/
        int busy_thr_num;                   /*忙状态线程个数*/
        int wait_exit_thr_num;              /*要销毁的线程个数*/
        int queue_front;                    /*队头索引下标*/
        int queue_rear;                     /*队未索引下标*/
        int queue_size;                     /*队中元素个数*/
        int queue_max_size;                 /*队列中最大容纳个数*/
        int shutdown;                       /*线程池使用状态,true或false*/
    };
    
    /**
     * @function void *threadpool_thread(void *threadpool)
     * @desc the worker thread
     * @param threadpool the pool which own the thread
     */
    void *threadpool_thread(void *threadpool);
    /**
     * @function void *adjust_thread(void *threadpool);
     * @desc manager thread
     * @param threadpool the threadpool
     */
    void *adjust_thread(void *threadpool);
    /**
     * check a thread is alive
     */
    int is_thread_alive(pthread_t tid);
    
    int threadpool_free(threadpool_t *pool);
    
    threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size)
    {
        int i;
        threadpool_t *pool = NULL;
        do{
            if((pool = (threadpool_t *)malloc(sizeof(threadpool_t))) == NULL)
            {
                printf("malloc threadpool fail");
                break;          /*跳出do while*/
            }
    
            pool->min_thr_num = min_thr_num;
            pool->max_thr_num = max_thr_num;
            pool->busy_thr_num = 0;
            pool->live_thr_num = min_thr_num;
            pool->queue_size = 0;
            pool->queue_max_size = queue_max_size;
            pool->queue_front = 0;
            pool->queue_rear = 0;
            pool->shutdown = false;
    
            pool->threads = (pthread_t *)malloc(sizeof(pthread_t)*max_thr_num);
            if (pool->threads == NULL)
            {
                printf("malloc threads fail");
                break;
            }
            memset(pool->threads, 0, sizeof(pool->threads));
    
            pool->task_queue = (threadpool_task_t *)malloc(sizeof(threadpool_task_t)*queue_max_size);
            if (pool->task_queue == NULL)
            {
                printf("malloc task_queue fail");
                break;
            }
    
            if (pthread_mutex_init(&(pool->lock), NULL) != 0
                    || pthread_mutex_init(&(pool->thread_counter), NULL) != 0
                    || pthread_cond_init(&(pool->queue_not_empty), NULL) != 0
                    || pthread_cond_init(&(pool->queue_not_full), NULL) != 0)
            {
                printf("init the lock or cond fail");
                break;
            }
    
            /* 启动min_thr_num个work thread */
            for (i = 0; i < min_thr_num; i++)
            {
                pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);
                printf("start thread 0x%x...
    ", (unsigned int)pool->threads[i]);
            }
            pthread_create(&(pool->adjust_tid), NULL, adjust_thread, (void *)pool);
            return pool;
    
        }while(0);
        
        threadpool_free(pool);      /*前面代码调用失败时,释放poll存储空间*/
        return NULL;
    }
    
    int threadpool_add(threadpool_t *pool, void*(*function)(void *arg), void *arg)
    {
        pthread_mutex_lock(&(pool->lock));
    
        while ((pool->queue_size == pool->queue_max_size) && (!pool->shutdown))
        {
            pthread_cond_wait(&(pool->queue_not_full), &(pool->lock));
        }
        if (pool->shutdown)
        {
            pthread_mutex_unlock(&(pool->lock));
        }
    
        /*添加任务到任务队列里*/
        if (pool->task_queue[pool->queue_rear].arg != NULL)
        {
            free(pool->task_queue[pool->queue_rear].arg);
            pool->task_queue[pool->queue_rear].arg = NULL;
        }
        pool->task_queue[pool->queue_rear].function = function;
        pool->task_queue[pool->queue_rear].arg = arg;
        pool->queue_rear = (pool->queue_rear + 1)%pool->queue_max_size;
        pool->queue_size++;
    
        /*任务队列不为空,唤醒等待处理任务的线程*/
        pthread_cond_signal(&(pool->queue_not_empty));
        pthread_mutex_unlock(&(pool->lock));
    
        return 0;
    }
    
    void *threadpool_thread(void *threadpool)
    {
        threadpool_t *pool = (threadpool_t *)threadpool;
        threadpool_task_t task;
        while(true)
        {
            /* Lock must be taken to wait on conditional variable */
            /*刚创建出线程,等待任务队列里有任务,否则阻塞等待任务队列里有任务后再唤醒接收任务*/
            pthread_mutex_lock(&(pool->lock));
    
            while ((pool->queue_size == 0) && (!pool->shutdown))
            {
                printf("thread 0x%x is waiting
    ", (unsigned int)pthread_self());
                pthread_cond_wait(&(pool->queue_not_empty), &(pool->lock));
                /*清除指定数目的空闲线程,如果要结束的线程个数大于0,结束线程*/
                if (pool->wait_exit_thr_num > 0)
                {
                    pool->wait_exit_thr_num--;
                    /*如果线程池里线程个数大于最小值时可以结束当前线程*/
                    if (pool->live_thr_num > pool->min_thr_num)
                    {
                        printf("thread 0x%x is exiting
    ", (unsigned int)pthread_self());
                        pool->live_thr_num--;
                        pthread_mutex_unlock(&(pool->lock));
                        pthread_exit(NULL);
                    }
                }
            }
    
            /*如果指定了true,要关闭线程池里的每个线程,自行退出处理*/
            if (pool->shutdown)
            {
                pthread_mutex_unlock(&(pool->lock));
                printf("thread 0x%x is exiting
    ", (unsigned int)pthread_self());
                pthread_exit(NULL);
            }
            /*从任务队列里获得任务*/
            task.function = pool->task_queue[pool->queue_front].function;
            task.arg = pool->task_queue[pool->queue_front].arg;
            pool->queue_front = (pool->queue_front + 1)%pool->queue_max_size;
            pool->queue_size--;
    
            /*通知可以有新的任务添加进来*/
            pthread_cond_broadcast(&(pool->queue_not_full));
    
            pthread_mutex_unlock(&(pool->lock));
    
            /*执行任务*/ 
            printf("thread 0x%x start working
    ", (unsigned int)pthread_self());
            pthread_mutex_lock(&(pool->thread_counter));
            pool->busy_thr_num++;                                       /*忙状态线程数加1*/
            pthread_mutex_unlock(&(pool->thread_counter));
            (*(task.function))(task.arg);                               /*执行回调函数任务*/
            //task.function(task.arg);                               /*执行回调函数任务*/
    
            /*任务结束处理*/ 
            printf("thread 0x%x end working
    ", (unsigned int)pthread_self());
            pthread_mutex_lock(&(pool->thread_counter));
            pool->busy_thr_num--;                                       /*忙状态数减1*/
            pthread_mutex_unlock(&(pool->thread_counter));
        }
    
        pthread_exit(NULL);
        //return (NULL);
    }
    
    
    void *adjust_thread(void *threadpool)
    {
        int i;
        threadpool_t *pool = (threadpool_t *)threadpool;
        while (!pool->shutdown)
        {
            sleep(DEFAULT_TIME);                                    /*延时10秒*/
            pthread_mutex_lock(&(pool->lock));
            int queue_size = pool->queue_size;
            int live_thr_num = pool->live_thr_num;
            pthread_mutex_unlock(&(pool->lock));
    
            pthread_mutex_lock(&(pool->thread_counter));
            int busy_thr_num = pool->busy_thr_num;
            pthread_mutex_unlock(&(pool->thread_counter));
    
            /*任务数大于最小线程池个数并且存活的线程数少于最大线程个数时,创建新线程*/
            if (queue_size >= MIN_WAIT_TASK_NUM && live_thr_num < pool->max_thr_num)
            {
                pthread_mutex_lock(&(pool->lock));
                int add = 0;
                /*一次增加DEFAULT_THREAD个线程*/
                for (i = 0; i < pool->max_thr_num && add < DEFAULT_THREAD_VARY && pool->live_thr_num < pool->max_thr_num; i++)
                {
                    if (pool->threads[i] == 0 || !is_thread_alive(pool->threads[i]))
                    {
                        pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);
                        add++;
                        pool->live_thr_num++;
                    }
                }
                pthread_mutex_unlock(&(pool->lock));
            }
    
            /*销毁多余的空闲线程*/
            if ((busy_thr_num * 2) < live_thr_num
                    && live_thr_num > pool->min_thr_num)
            {
                /*一次销毁DEFAULT_THREAD个线程*/
                pthread_mutex_lock(&(pool->lock));
                pool->wait_exit_thr_num = DEFAULT_THREAD_VARY;
                pthread_mutex_unlock(&(pool->lock));
    
                for (i = 0; i < DEFAULT_THREAD_VARY; i++)
                {
                    /*通知处在空闲状态的线程*/
                    pthread_cond_signal(&(pool->queue_not_empty));
                }
            }
        }
    }
    
    int threadpool_destroy(threadpool_t *pool)
    {
        int i;
        if (pool == NULL)
        {
            return -1;
        }
    
        pool->shutdown = true;
        /*先销毁管理线程*/
        pthread_join(pool->adjust_tid, NULL);
        for (i = 0; i < pool->live_thr_num; i++)
        {
            /*通知所有的空闲线程*/
            pthread_cond_broadcast(&(pool->queue_not_empty));
            pthread_join(pool->threads[i], NULL);
        }
        threadpool_free(pool);
        return 0;
    }
    
    int threadpool_free(threadpool_t *pool)
    {
        if (pool == NULL)
        {
            return -1;
        }
        if (pool->task_queue)
        {
            free(pool->task_queue);
        }
        if (pool->threads)
        {
            free(pool->threads);
            pthread_mutex_lock(&(pool->lock));
            pthread_mutex_destroy(&(pool->lock));
            pthread_mutex_lock(&(pool->thread_counter));
            pthread_mutex_destroy(&(pool->thread_counter));
            pthread_cond_destroy(&(pool->queue_not_empty));
            pthread_cond_destroy(&(pool->queue_not_full));
        }
        free(pool);
        pool = NULL;
        return 0;
    }
    
    int threadpool_all_threadnum(threadpool_t *pool)
    {
        int all_threadnum = -1;
        pthread_mutex_lock(&(pool->lock));
        all_threadnum = pool->live_thr_num;
        pthread_mutex_unlock(&(pool->lock));
        return all_threadnum;
    }
    
    int threadpool_busy_threadnum(threadpool_t *pool)
    {
        int busy_threadnum = -1;
        pthread_mutex_lock(&(pool->thread_counter));
        busy_threadnum = pool->busy_thr_num;
        pthread_mutex_unlock(&(pool->thread_counter));
        return busy_threadnum;
    }
    
    int is_thread_alive(pthread_t tid)
    {
        int kill_rc = pthread_kill(tid, 0);
        if (kill_rc == ESRCH)
        {
            return false;
        }
        return true;
    }
    
    /*测试使用,作成库时请注释掉下面代码*/ 
    #if 1
    void *process(void *arg)
    {
        printf("thread 0x%x working on task %d
     ",(unsigned int)pthread_self(),*(int *)arg);
        sleep(1);
        printf("task %d is end
    ",*(int *)arg);
        return NULL;
    }
    int main(void)
    {
        threadpool_t *thp = threadpool_create(3,100,100);    /*线程池里最小3个线程,最大100个,队列最大值12*/
        printf("pool inited");
    
        int *num = (int *)malloc(sizeof(int)*20);
        //int num[20];
        int i;
        for (i=0;i<10;i++)
        {
            num[i]=i;
            printf("add task %d
    ",i);
            threadpool_add(thp,process,(void*)&num[i]);
        }
        sleep(10);
        threadpool_destroy(thp);
    }
    #endif
  • 相关阅读:
    新买的电脑桌面只有回收站该做些什么
    不安装oracle客户端也可以使用pl/sql developer
    Win7上安装Oracle数据库
    忘记oracle的sys用户密码怎么修改
    UML中类之间的关系
    JAVAEE 是什么,如何获取各种规范jar包及各种规范的jar包源码
    PL/SQL Developer使用技巧、快捷键
    Windows 7上安装Microsoft Loopback Adapter(微软环回网卡)
    超棒的30款JS类库和工具
    HTTP协议
  • 原文地址:https://www.cnblogs.com/bwbfight/p/10901574.html
Copyright © 2011-2022 走看看