zoukankan      html  css  js  c++  java
  • 线性代数之特征值与特征向量

    [作者:byeyear,首发于cnblogs.com,转载请注明。联系:east3@163.com]

    0. 我们可以将特征值与特征向量类比于信号与系统课程中的特征函数。在那里,系统对特征函数的作用相当于乘以一个(复)常数。

        于是,我们可以将矩阵A想象为一个“系统”,输入到该系统的“信号”x可分解为特征向量的加权和,

        这样,矩阵A这个“系统”对任意向量x的作用就可分解为A系统对特征向量作用的加权和。

    1. 一个例子:随机矩阵与其稳态向量q满足Aq=q,此时 特征值λ=1,特征向量即稳态向量q。

    2. 由Ax=λx,可以推出(A-λI)x=0。由于特征向量不能为0,该方程必须有非平凡解,因此A-λI不可逆;

        所以det(A-λI)=0。据此可解出所有λ,再跟据λ可解出特征向量。det(A-λI)=0称为特征方程。

    3. 根据齐次线性方程组的特点,一个特征值对应的特征向量有无限多个,且对应于λ的所有特征向量加上零向量可以构成向量空间,称为矩阵A对应于特征值λ的特征空间。

    4. n阶矩阵的特征方程是λ的n阶方程,如果将特征向量限制在R中,那么特征方程未必有解,即不是所有的矩阵都有R域中的特征值;但每一个矩阵一定存在n个复数域中的特征值(k重根按k个特征值计)。

    5. 设λ1,...λr是n阶矩阵的r个相异特征值,v1,...vr是对应的r个特征向量,那么向量集{v1,...vr}线性无关。

    6. 若存在可逆矩阵P使得两个n阶矩阵A,B满足A=PBP-1,则称A,B相似。

    7. 若n阶矩阵A,B相似,那么这两者有相同的特征多项式,从而有相同的特征值(包括相同的代数重数)。但特征向量一般不同!!!

    8. 特征向量的应用举例

        假设我们现在要分析xk+1=Axk,x0已知。如果我们能将x0分解为A的特征向量的线性组合,比如x0=c1v1+c2v2,v1,v2为A的特征向量,

        那么上述递归方程就能有一个简单的解法解出xk

        x1=Ax0

           =A(c1v1+c2v2)

           =c1Av1+c2Av2

           =c1λv1+c2λv2

        x2=Ax1

            =A(c1λv1+c2λv2)

            =c1λAv1+c2λAv2

            =c1λ2v1+c2λ2v2

        ...

        xk=c1λkv1+c2λkv2

    9. n阶矩阵可对角化的条件是A有n个线性无关的特征向量。

        若A=PDP-1,D为对角阵,那么P的列向量是A的n个线性无关的特征向量,D的主对角线元素是A的对应于P中特征向量的特征值。

        换言之,A可对角化的充分必要条件是有足够多的特征向量形成Rn的基。这样的基称为特征向量基。

    10. 某特征值对应的特征空间的维数小于或等于该特征值的代数重数。

    11. 矩阵A可对角化的充分必要条件是所有不同特征空间的维数和为n,即每个特征值对应特征空间的维数等于该特征值的代数重数。

    12. 若A可对角化,那么所有特征空间的基的向量的集合是Rn的特征向量基。

    13. 若V是n维向量空间,W是m维向量空间,T是V到W的线性变换,B和C分别是V和W的基,那么T相对于基B和C的矩阵为:

          M=[ [T(b1)]c  ...  [T(bn)]c ]

          用M来表示V到W的变换:

          [T(x)]c = M[x]B

          直观的解释:V中的任意一个向量都能表示为基B中各向量的线性组合,因此,只要知道了B中各向量经变换T后在W中的“样子”,就能知道V中任意向量经变换T后在W中的“样子”。

          若W=V,C=B,上式即简化为:

          [T(x)]B = [T]B[x]B

           此时M=[T]B,称为T相对于B的矩阵,或简称为T的B-矩阵。

    14. 设A=PDP-1,D为n阶对角矩阵,若Rn的基由P的列向量组成,那么D是变换x|->Ax的B-矩阵。

          写成表达式就是,若x|->Ax,那么[x]B|->D[x]B,[x]B是x在P的列向量所组成的基下的坐标。

          上面两个变换式x|->Ax和[x]B|->D[x]B描述的是相对于不同基的同一个线性变换。

          这也解释了什么叫做“相似”:两个相似矩阵可用来描述(相对于不同基的)同一个线性变换。

          实际上,上述表述中,D不一定要是对角矩阵。

         设y=Ax,且A可表示成PDP-1,那么:

         y=Ax

         => y=PDP-1x

         => P-1y=P-1PDP-1x

         => P-1y=DP-1x

         => (P-1y)=D(P-1x)

         P-1y和P-1x可分别看作y和x在Rn的基P下的坐标。

         对于差分方程xk+1=Axk,上式就成为:

         P-1xk+1=D(P-1xk)

         用w表示x在P下的坐标,就是:

         wK+1=Dwk

         矩阵A对角化后的最大优点是解耦了向量x的各分量。如果A可对角化,那么在A的特征向量基下,运算Ax将简化为各方向上的缩放(Du)。

     15. 

  • 相关阅读:
    Vue 2.x windows环境下安装
    VSCODE官网下载缓慢或下载失败 解决办法
    angular cli 降级
    Win10 VS2019 设置 以管理员身份运行
    XSHELL 连接 阿里云ECS实例
    Chrome浏览器跨域设置
    DBeaver 执行 mysql 多条语句报错
    DBeaver 连接MySql 8.0 报错 Public Key Retrieval is not allowed
    DBeaver 连接MySql 8.0报错 Unable to load authentication plugin 'caching_sha2_password'
    Linux系统分区
  • 原文地址:https://www.cnblogs.com/byeyear/p/3329188.html
Copyright © 2011-2022 走看看