zoukankan      html  css  js  c++  java
  • 深入理解垃圾回收机制

    垃圾回收机制

    1.什么是垃圾回收

           垃圾回收(Garbage Collection,GC),顾名思义是回收系统不再占用的内存空间,它是Java的一个核心技术。在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象;而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便被定义为垃圾,这时JVM的一个系统级线程会自动释放该内存块,从而该空间可以被后来的新对象使用。

    2.如何确定某个对象是“垃圾”?

    2.1引用计数法

           在java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行。那么很显然一个简单的办法就是通过引用计数来判断一个对象是否可以被回收。即,给对象添加一个引用计数器,若有地方引用时,计数器就加一,若引用失效时,计数器就减一,当计数器为0时,该内存就以可以被线程自动回收。这种方式成为“引用计数法”。

           这种方式的特点是实现简单,而且效率较高,但是它无法解决循环引用的问题,因此在Java中并没有采用这种方式(Python采用的是引用计数法)。看下面这段代码:

    public class Main {
    	public static void main(String[] args) {
    		MyObject object1 = new MyObject();
    		MyObject object2 = new MyObject();
    		object1.object = object2;
    		object2.object = object1;
    		object1 = null;
    		object2 = null;
    	}
    	class MyObject{
    	public Object object = null;
    	}
    }
    

           最后面两句将object1和object2赋值为null,也就是说object1和object2指向的对象已经不可能再被访问,但是由于它们互相引用对方,导致它们的引用计数都不为0,那么垃圾收集器就永远不会回收它们。

           为了解决这个问题,在Java中采取了“可达性分析法”。

    2.2可达性分析算法

           “可达性分析法”的基本思想是通过一系列的“GC Roots”对象作为起点进行搜索,搜索走过的路径称为引用链,当一个对象到“GC Roots”没有任何引用链相连时,该对象是不可达的,则可证明该对象不可用。

           如下图所示,白色对象虽然有相互引用,但是可判定为可回收的对象。
    可达性分析算法

    3.垃圾收集算法

           在确定了哪些垃圾可以被回收后,垃圾收集器要做的事情就是开始进行垃圾回收,但是这里面涉及到一个问题是:如何高效地进行垃圾回收。接下来介绍几种常见的垃圾收集算法的核心思想。

    3.1标记-清除(Mark-Sweep)算法

           这是最基础的垃圾回收算法,之所以说它是最基础的是因为它最容易实现,思想也是最简单的。标记-清除算法分为两个阶段:标记阶段和清除阶段。标记阶段的任务是标记出所有需要被回收的对象,清除阶段就是回收被标记的对象所占用的空间。具体过程如下图所示:
    标记-清除(Mark-Sweep)

           从图中可以很容易看出标记-清除算法实现起来比较容易,但是有一个比较严重的问题就是容易产生内存碎片,碎片太多可能会导致后续过程中需要为大对象分配空间时无法找到足够的空间而提前触发新的一次垃圾收集动作。

    3.2复制(Copying)算法

           为了解决Mark-Sweep算法的缺陷,Copying算法就被提了出来。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用的内存空间一次清理掉,这样一来就不容易出现内存碎片的问题。具体过程如下图所示:

    Copying算法

           这种算法虽然实现简单,运行高效且不容易产生内存碎片,但是却对内存空间的使用做出了高昂的代价,因为能够使用的内存缩减到原来的一半。

           很显然,Copying算法的效率跟存活对象的数目多少有很大的关系,如果存活对象很多,那么Copying算法的效率将会大大降低。

    3.3标记-整理(Mark-Compact)算法

           为了解决Copying算法的缺陷,充分利用内存空间,提出了Mark-Compact算法。该算法标记阶段和Mark-Sweep一样,但是在完成标记之后,它不是直接清理可回收对象,而是将存活对象都向一端移动,然后清理掉端边界以外的内存。具体过程如下图所示:

    Mark-Compact

    3.4分代收集(Generational Collection)算法

           分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。

           目前大部分垃圾收集器对于新生代都采取Copying算法,因为新生代中每次垃圾回收都要回收大部分对象,也就是说需要复制的操作次数较少,但是实际中并不是按照1:1的比例来划分新生代的空间的,一般来说是将新生代划分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden空间和其中的一块Survivor空间,当进行回收时,将Eden和Survivor中还存活的对象复制到另一块Survivor空间中,然后清理掉Eden和刚才使用过的Survivor空间。

           而由于老年代的特点是每次回收都只回收少量对象,一般使用的是Mark-Compact算法。

           注意,在堆区之外还有一个代就是永久代(Permanet Generation),它用来存储class类、常量、方法描述等。对永久代的回收主要回收两部分内容:废弃常量和无用的类。

    4.垃圾收集器

    如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回首的具体实现。

    上图展示了7种作用于不同分带的收集器,如果两个收集器之间存在连线,则可以搭配使用。

    4.1Serial垃圾收集器

           Serial是最基本、历史最悠久的垃圾收集器,使用复制算法,曾经是JDK1.3.1之前新生代唯一的垃圾收集器。

           Serial是一个单线程的收集器,它不仅仅只会使用一个CPU或一条线程去完成垃圾收集工作,并且在进行垃圾收集的同时,必须暂停其他所有的工作线程,直到垃圾收集结束。

           Serial垃圾收集器虽然在收集垃圾过程中需要暂停所有其他的工作线程,但是它简单高效,对于限定单个CPU环境来说,没有线程交互的开销,可以获得最高的单线程垃圾收集效率,因此Serial垃圾收集器依然是java虚拟机运行在Client模式下默认的新生代垃圾收集器。

    4.2ParNew垃圾收集器

           ParNew垃圾收集器其实是Serial收集器的多线程版本,也使用复制算法,除了使用多线程进行垃圾收集之外,其余的行为和Serial收集器完全一样,ParNew垃圾收集器在垃圾收集过程中同样也要暂停所有其他的工作线程。

           ParNew收集器默认开启和CPU数目相同的线程数,可以通过-XX:ParallelGCThreads参数来限制垃圾收集器的线程数。

           ParNew虽然是除了多线程外和Serial收集器几乎完全一样,但是ParNew垃圾收集器是很多java虚拟机运行在Server模式下新生代的默认垃圾收集器。

    4.3Parallel Scavenge收集器

           Parallel Scavenge收集器也是一个新生代垃圾收集器,同样使用复制算法,也是一个多线程的垃圾收集器,它重点关注的是程序达到一个可控制的吞吐量(Thoughput,CPU用于运行用户代码的时间/CPU总消耗时间,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间)),高吞吐量可以最高效率地利用CPU时间,尽快地完成程序的运算任务,主要适用于在后台运算而不需要太多交互的任务。

           Parallel Scavenge收集器提供了两个参数用于精准控制吞吐量:

    a.-XX:MaxGCPauseMillis:控制最大垃圾收集停顿时间,是一个大于0的毫秒数。

    b.-XX:GCTimeRation:直接设置吞吐量大小,是一个大于0小于100的整数,也就是程序运行时间占总时间的比率,默认值是99,即垃圾收集运行最大1%(1/(1+99))的垃圾收集时间。

           Parallel Scavenge是吞吐量优先的垃圾收集器,它还提供一个参数:-XX:+UseAdaptiveSizePolicy,这是个开关参数,打开之后就不需要手动指定新生代大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRation)、新生代晋升年老代对象年龄(-XX:PretenureSizeThreshold)等细节参数,虚拟机会根据当前系统运行情况收集性能监控信息,动态调整这些参数以达到最大吞吐量,这种方式称为GC自适应调节策略,自适应调节策略也是ParallelScavenge收集器与ParNew收集器的一个重要区别。

    4.4Serial Old收集器:

           Serial Old是Serial垃圾收集器年老代版本,它同样是个单线程的收集器,使用标记-整理算法,这个收集器也主要是运行在Client默认的java虚拟机默认的年老代垃圾收集器。
    在Server模式下,主要有两个用途:

           a.在JDK1.5之前版本中与新生代的Parallel Scavenge收集器搭配使用。

           b.作为年老代中使用CMS收集器的后备垃圾收集方案。

           新生代Serial与年老代Serial Old搭配垃圾收集过程图:

           新生代Parallel Scavenge收集器与ParNew收集器工作原理类似,都是多线程的收集器,都使用的是复制算法,在垃圾收集过程中都需要暂停所有的工作线程。
    新生代Parallel Scavenge/ParNew与年老代Serial Old搭配垃圾收集过程图:

    4.5Parallel Old收集器:

           Parallel Old收集器是Parallel Scavenge的年老代版本,使用多线程的标记-整理算法,在JDK1.6才开始提供。

           在JDK1.6之前,新生代使用ParallelScavenge收集器只能搭配年老代的Serial Old收集器,只能保证新生代的吞吐量优先,无法保证整体的吞吐量,Parallel Old正是为了在年老代同样提供吞吐量优先的垃圾收集器,如果系统对吞吐量要求比较高,可以优先考虑新生代Parallel Scavenge和年老代Parallel Old收集器的搭配策略。

           新生代Parallel Scavenge和年老代Parallel Old收集器搭配运行过程图:

    4.6CMS收集器:

           Concurrent mark sweep(CMS)收集器是一种年老代垃圾收集器,其最主要目标是获取最短垃圾回收停顿时间,和其他年老代使用标记-整理算法不同,它使用多线程的标记-清除算法。
    最短的垃圾收集停顿时间可以为交互比较高的程序提高用户体验,CMS收集器是Sun HotSpot虚拟机中第一款真正意义上并发垃圾收集器,它第一次实现了让垃圾收集线程和用户线程同时工作。

           CMS工作机制相比其他的垃圾收集器来说更复杂,整个过程分为以下4个阶段:

           a.初始标记:只是标记一下GC Roots能直接关联的对象,速度很快,仍然需要暂停所有的工作线程。

           b.并发标记:进行GC Roots跟踪的过程,和用户线程一起工作,不需要暂停工作线程。

           c.重新标记:为了修正在并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,仍然需要暂停所有的工作线程。

           d.并发清除:清除GC Roots不可达对象,和用户线程一起工作,不需要暂停工作线程。

           由于耗时最长的并发标记和并发清除过程中,垃圾收集线程可以和用户现在一起并发工作,所以总体上来看CMS收集器的内存回收和用户线程是一起并发地执行。
           CMS收集器工作过程:

           CMS收集器有以下三个不足:

           a. CMS收集器对CPU资源非常敏感,其默认启动的收集线程数=(CPU数量+3)/4,在用户程序本来CPU负荷已经比较高的情况下,如果还要分出CPU资源用来运行垃圾收集器线程,会使得CPU负载加重。

           b. CMS无法处理浮动垃圾(Floating Garbage),可能会导致Concurrent ModeFailure失败而导致另一次Full GC。由于CMS收集器和用户线程并发运行,因此在收集过程中不断有新的垃圾产生,这些垃圾出现在标记过程之后,CMS无法在本次收集中处理掉它们,只好等待下一次GC时再将其清理掉,这些垃圾就称为浮动垃圾。CMS垃圾收集器不能像其他垃圾收集器那样等待年老代机会完全被填满之后再进行收集,需要预留一部分空间供并发收集时的使用,可以通过参数-XX:CMSInitiatingOccupancyFraction来设置年老代空间达到多少的百分比时触发CMS进行垃圾收集,默认是68%。如果在CMS运行期间,预留的内存无法满足程序需要,就会出现一次ConcurrentMode Failure失败,此时虚拟机将启动预备方案,使用Serial Old收集器重新进行年老代垃圾回收。

           c. CMS收集器是基于标记-清除算法,因此不可避免会产生大量不连续的内存碎片,如果无法找到一块足够大的连续内存存放对象时,将会触发因此Full GC。CMS提供一个开关参数-XX:+UseCMSCompactAtFullCollection,用于指定在Full GC之后进行内存整理,内存整理会使得垃圾收集停顿时间变长,CMS提供了另外一个参数-XX:CMSFullGCsBeforeCompaction,用于设置在执行多少次不压缩的Full GC之后,跟着再来一次内存整理。

    4.7G1收集器:

           Garbage first垃圾收集器是目前垃圾收集器理论发展的最前沿成果,相比与CMS收集器,G1收集器两个最突出的改进是:

           a. 基于标记-整理算法,不产生内存碎片。

           b. 可以非常精确控制停顿时间,在不牺牲吞吐量前提下,实现低停顿垃圾回收。

           G1收集器避免全区域垃圾收集,它把堆内存划分为大小固定的几个独立区域,并且跟踪这些区域的垃圾收集进度,同时在后台维护一个优先级列表,每次根据所允许的收集时间,优先回收垃圾最多的区域。区域划分和优先级区域回收机制,确保G1收集器可以在有限时间获得最高的垃圾收集效率。

    转载自《深入理解Java虚拟机》

  • 相关阅读:
    一、JQuery选择器
    二、HelloMaven-第一个Maven项目
    一、maven的简介和环境搭建
    Junit源码
    五、spring和Hibernate整合
    JS 冒泡排序从学到优化
    JS小案例(基础好烦恼少)----持续更新
    JS+PHP实现用户输入数字后取得最大的值并显示为第几个
    将博客搬至CSDN
    HTML表单相关
  • 原文地址:https://www.cnblogs.com/byonecry/p/4446093.html
Copyright © 2011-2022 走看看