zoukankan      html  css  js  c++  java
  • 几种经典的滤波算法(转)

    1、限幅滤波法(又称程序判断滤波法)

        A、方法:
            根据经验判断,确定两次采样允许的最大偏差值(设为A)
            每次检测到新值时判断:
            如果本次值与上次值之差<=A,则本次值有效
            如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值
        B、优点:
            能有效克服因偶然因素引起的脉冲干扰
        C、缺点
            无法抑制那种周期性的干扰
            平滑度差
        
    2、中位值滤波法
        A、方法:
            连续采样N次(N取奇数)
            把N次采样值按大小排列
            取中间值为本次有效值
        B、优点:
            能有效克服因偶然因素引起的波动干扰
            对温度、液位的变化缓慢的被测参数有良好的滤波效果
        C、缺点:
            对流量、速度等快速变化的参数不宜

    3、算术平均滤波法
        A、方法:
            连续取N个采样值进行算术平均运算
            N值较大时:信号平滑度较高,但灵敏度较低
            N值较小时:信号平滑度较低,但灵敏度较高
            N值的选取:一般流量,N=12;压力:N=4
        B、优点:
            适用于对一般具有随机干扰的信号进行滤波
            这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
        C、缺点:
            对于测量速度较慢或要求数据计算速度较快的实时控制不适用
            比较浪费RAM
            
    4、递推平均滤波法(又称滑动平均滤波法)
        A、方法:
            把连续取N个采样值看成一个队列
            队列的长度固定为N
            每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
            把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
            N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4
        B、优点:
            对周期性干扰有良好的抑制作用,平滑度高
            适用于高频振荡的系统    
        C、缺点:
            灵敏度低
            对偶然出现的脉冲性干扰的抑制作用较差
            不易消除由于脉冲干扰所引起的采样值偏差
            不适用于脉冲干扰比较严重的场合
            比较浪费RAM
            
    5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
        A、方法:
            相当于“中位值滤波法”+“算术平均滤波法”
            连续采样N个数据,去掉一个最大值和一个最小值
            然后计算N-2个数据的算术平均值
            N值的选取:3~14
        B、优点:
            融合了两种滤波法的优点
            对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
        C、缺点:
            测量速度较慢,和算术平均滤波法一样
            比较浪费RAM


    6、限幅平均滤波法
        A、方法:
            相当于“限幅滤波法”+“递推平均滤波法”
            每次采样到的新数据先进行限幅处理,
            再送入队列进行递推平均滤波处理
        B、优点:
            融合了两种滤波法的优点
            对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
        C、缺点:
            比较浪费RAM

    7、一阶滞后滤波法
        A、方法:
            取a=0~1
            本次滤波结果=(1-a)*本次采样值+a*上次滤波结果
        B、优点:
            对周期性干扰具有良好的抑制作用
            适用于波动频率较高的场合
        C、缺点:
            相位滞后,灵敏度低
            滞后程度取决于a值大小
            不能消除滤波频率高于采样频率的1/2的干扰信号
            
    8、加权递推平均滤波法
        A、方法:
            是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
            通常是,越接近现时刻的数据,权取得越大。
            给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
        B、优点:
            适用于有较大纯滞后时间常数的对象
            和采样周期较短的系统
        C、缺点:
            对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
            不能迅速反应系统当前所受干扰的严重程度,滤波效果差

    9、消抖滤波法
        A、方法:
            设置一个滤波计数器
            将每次采样值与当前有效值比较:
            如果采样值=当前有效值,则计数器清零
            如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
                如果计数器溢出,则将本次值替换当前有效值,并清计数器
        B、优点:
            对于变化缓慢的被测参数有较好的滤波效果,
            可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动
        C、缺点:
            对于快速变化的参数不宜
            如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统

    10、限幅消抖滤波法
        A、方法:
            相当于“限幅滤波法”+“消抖滤波法”
            先限幅,后消抖
        B、优点:
            继承了“限幅”和“消抖”的优点
            改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统
        C、缺点:
            对于快速变化的参数不宜


    第11种方法:IIR 数字滤波器 

    A. 方法:
       确定信号带宽, 滤之。
       Y(n) = a1*Y(n-1) + a2*Y(n-2) + ... + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X(n-2) + ... + bk*X(n-k)

    B. 优点:高通,低通,带通,带阻任意。设计简单(用matlab)
    C. 缺点:运算量大。
      

    //--------------------------------------------------------------------- 

    软件滤波的C程序样例

    10种软件滤波方法的示例程序

    假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();

    1、限副滤波
    /*  A值可根据实际情况调整
        value为有效值,new_value为当前采样值  
        滤波程序返回有效的实际值  */
    #define A 10

    char value;

    char filter()
    {
       char  new_value;
       new_value = get_ad();
       if ( ( new_value - value > A ) || ( value - new_value > A )
          return value;
       return new_value;
             
    }

    2、中位值滤波法
    /*  N值可根据实际情况调整
        排序采用冒泡法*/
    #define N  11

    char filter()
    {
       char value_buf[N];
       char count,i,j,temp;
       for ( count=0;count<N;COUNT++)
       {
          value_buf[count] = get_ad();
          delay();
       }
       for (j=0;j<N-1;J++)
       {
          for (i=0;i<N-J;I++)
          {
             if ( value_buf>value_buf[i+1] )
             {
                temp = value_buf;
                value_buf = value_buf[i+1]; 
                 value_buf[i+1] = temp;
             }
          }
       }
       return value_buf[(N-1)/2];
    }     

    3、算术平均滤波法
    /*
    */

    #define N 12

    char filter()
    {
       int  sum = 0;
       for ( count=0;count<N;COUNT++)
       {
          sum + = get_ad();
          delay();
       }
       return (char)(sum/N);
    }

    4、递推平均滤波法(又称滑动平均滤波法)
    /*
    */
    #define N 12 

    char value_buf[N];
    char i=0;

    char filter()
    {
       char count;
       int  sum=0;
       value_buf[i++] = get_ad();
       if ( i == N )   i = 0;
       for ( count=0;count<N,COUNT++)
          sum = value_buf[count];
       return (char)(sum/N);
    }

    5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
    /*
    */
    #define N 12

    char filter()
    {
       char count,i,j;
       char value_buf[N];
       int  sum=0;
       for  (count=0;count<N;COUNT++)
       {
          value_buf[count] = get_ad();
          delay();
       }
       for (j=0;j<N-1;J++)
       {
          for (i=0;i<N-J;I++)
          {
             if ( value_buf>value_buf[i+1] )
             {
                temp = value_buf;
                value_buf = value_buf[i+1]; 
                 value_buf[i+1] = temp;
             }
          }
       }
       for(count=1;count<N-1;COUNT++)
          sum += value[count];
       return (char)(sum/(N-2));
    }

    6、限幅平均滤波法
    /*
    */  
    略 参考子程序1、3

    7、一阶滞后滤波法
    /* 为加快程序处理速度假定基数为100,a=0~100 */

    #define a 50

    char value;

    char filter()
    {
       char  new_value;
       new_value = get_ad();
       return (100-a)*value + a*new_value; 
    }

    8、加权递推平均滤波法
    /* coe数组为加权系数表,存在程序存储区。*/

    #define N 12

    char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
    char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;

    char filter()
    {
       char count;
       char value_buf[N];
       int  sum=0;
       for (count=0,count<N;COUNT++)
       {
          value_buf[count] = get_ad();
          delay();
       }
       for (count=0,count<N;COUNT++)
          sum += value_buf[count]*coe[count];
       return (char)(sum/sum_coe);
    }

    9、消抖滤波法

    #define N 12

    char filter()
    {
       char count=0;
       char new_value;
       new_value = get_ad();
       while (value !=new_value);
       {
          count++;
          if (count>=N)   return new_value;
           delay();
          new_value = get_ad();
       }
       return value;    
    }

    10、限幅消抖滤波法
    /*
    */
    略 参考子程序1、9

    11、IIR滤波例子

    int  BandpassFilter4(int InputAD4)
    {
        int  ReturnValue; 
        int  ii;
        RESLO=0;
        RESHI=0;
        MACS=*PdelIn;
        OP2=1068; //FilterCoeff4[4];
        MACS=*(PdelIn+1);
        OP2=8;    //FilterCoeff4[3];
        MACS=*(PdelIn+2);
        OP2=-2001;//FilterCoeff4[2];
        MACS=*(PdelIn+3);
        OP2=8;    //FilterCoeff4[1];
        MACS=InputAD4;
        OP2=1068; //FilterCoeff4[0];
        MACS=*PdelOu;
        OP2=-7190;//FilterCoeff4[8];
        MACS=*(PdelOu+1);
        OP2=-1973; //FilterCoeff4[7];
        MACS=*(PdelOu+2);
        OP2=-19578;//FilterCoeff4[6];
        MACS=*(PdelOu+3);
        OP2=-3047; //FilterCoeff4[5];
        *p=RESLO;
        *(p+1)=RESHI;
        mytestmul<<=2;
        ReturnValue=*(p+1);
        for  (ii=0;ii<3;ii++)
        {
         DelayInput[ii]=DelayInput[ii+1];
         DelayOutput[ii]=DelayOutput[ii+1];
         } 
         DelayInput[3]=InputAD4;
         DelayOutput[3]=ReturnValue;
         
       //  if (ReturnValue<0)
       //  {
       //  ReturnValue=-ReturnValue;
       //  }
        return ReturnValue;  
    }

  • 相关阅读:
    oracle hint
    oracle资源
    数据迁移相关笔记
    csdn的blog可以直接导入内含图片的word文档吗?
    Windows Live Writer离线博客工具使用教程(适用于博客园、CSDN、51CTO等等博客)
    csdn的博客上传word图片
    怎样将word中的图片插入到CSDN博客中
    测试用Word2007发布博客文章
    用WORD2007发布博客文章
    Word2007发布博客
  • 原文地址:https://www.cnblogs.com/bytebee/p/6171427.html
Copyright © 2011-2022 走看看