zoukankan      html  css  js  c++  java
  • 剥开比原看代码10:比原是如何通过/create-key接口创建密钥的

    作者:freewind

    比原项目仓库:

    Github地址:https://github.com/Bytom/bytom

    Gitee地址:https://gitee.com/BytomBlockchain/bytom

    在前一篇,我们探讨了从浏览器的dashboard中进行注册的时候,密钥、帐户的别名以及密码,是如何从前端传到了后端。在这一篇,我们就要看一下,当比原后台收到了创建密钥的请求之后,将会如何创建。

    由于本文的问题比较具体,所以就不需要再细分,我们直接从代码开始。

    还记得在前一篇中,对应创建密钥的web api的功能点的配置是什么样的吗?

    API.buildHandler方法中:

    api/api.go#L164-L244

    func (a *API) buildHandler() {
        // ...
        if a.wallet != nil {
            // ...
            m.Handle("/create-key", jsonHandler(a.pseudohsmCreateKey))
            // ...
    

    可见,其路径为/create-key,而相应的handler是a.pseudohsmCreateKey(外面套着的jsonHandler在之前已经讨论过,这里不提):

    api/hsm.go#L23-L32

    func (a *API) pseudohsmCreateKey(ctx context.Context, in struct {
        Alias string `json:"alias"`
        Password string `json:"password"`
    }) Response {
        xpub, err := a.wallet.Hsm.XCreate(in.Alias, in.Password)
        if err != nil {
            return NewErrorResponse(err)
        }
        return NewSuccessResponse(xpub)
    }
    

    它主要是调用了a.wallet.Hsm.XCreate,让我们跟进去:

    blockchain/pseudohsm/pseudohsm.go#L50-L66

    // XCreate produces a new random xprv and stores it in the db.
    func (h *HSM) XCreate(alias string, auth string) (*XPub, error) {
        // ...
        // 1.
        normalizedAlias := strings.ToLower(strings.TrimSpace(alias))
        // 2.
        if ok := h.cache.hasAlias(normalizedAlias); ok {
            return nil, ErrDuplicateKeyAlias
        }
    
        // 3.
        xpub, _, err := h.createChainKDKey(auth, normalizedAlias, false)
        if err != nil {
            return nil, err
        }
        // 4.
        h.cache.add(*xpub)
        return xpub, err
    }
    

    其中出现了HSM这个词,它是指Hardware-Security-Module,原来比原还预留了跟硬件相关的模块(暂不讨论)。

    上面的代码分成了4部分,分别是:

    1. 首先对传进来的alias参数进行标准化操作,即去两边空白,并且转换成小写
    2. 检查cache中有没有,有的话就直接返回并报个相应的错,不会重复生成,因为私钥和别名是一一对应的。在前端可以根据这个错误提醒用户检查或者换一个新的别名。
    3. 调用createChainKDKey生成相应的密钥,并拿到返回的公钥xpub
    4. 把公钥放入cache中。看起来公钥和别名并不是同一个东西,那前面为什么可以查询alias呢?

    所以我们进入h.cache.hasAlias看看:

    blockchain/pseudohsm/keycache.go#L76-L84

    func (kc *keyCache) hasAlias(alias string) bool {
        xpubs := kc.keys()
        for _, xpub := range xpubs {
            if xpub.Alias == alias {
                return true
            }
        }
        return false
    }
    

    通过xpub.Alias我们可以了解到,原来别名跟公钥是绑定的,alias可以看作是公钥的一个属性(当然也属于相应的私钥)。所以前面把公钥放进cache,之后就可以查询别名了。

    那么第3步中的createChainKDKey又是如何生成密钥的呢?

    blockchain/pseudohsm/pseudohsm.go#L68-L86

    func (h *HSM) createChainKDKey(auth string, alias string, get bool) (*XPub, bool, error) {
        // 1.
        xprv, xpub, err := chainkd.NewXKeys(nil)
        if err != nil {
            return nil, false, err
        }
        // 2.
        id := uuid.NewRandom()
        key := &XKey{
            ID: id,
            KeyType: "bytom_kd",
            XPub: xpub,
            XPrv: xprv,
            Alias: alias,
        }
        // 3.
        file := h.keyStore.JoinPath(keyFileName(key.ID.String()))
        if err := h.keyStore.StoreKey(file, key, auth); err != nil {
            return nil, false, errors.Wrap(err, "storing keys")
        }
        // 4.
        return &XPub{XPub: xpub, Alias: alias, File: file}, true, nil
    }
    

    这块代码内容比较清晰,我们可以把它分成4步,分别是:

    1. 调用chainkd.NewXKeys生成密钥。其中chainkd对应的是比原代码库中的另一个包"crypto/ed25519/chainkd",从名称上来看,使用的是ed25519算法。如果对前面文章“如何连上一个比原节点”还有印象的话,会记得比原在有新节点连上的时候,就会使用该算法生成一对密钥,用于当次连接进行加密通信。不过需要注意的是,虽然两者都是ed25519算法,但是上次使用的代码却是来自第三方库"github.com/tendermint/go-crypto"的。它跟这次的算法在细节上究竟有哪些不同,目前还不清楚,留待以后合适的机会研究。然后是传入chainkd.NewXKeys(nil)的参数nil,对应的是“随机数生成器”。如果传的是nilNewXKeys就会在内部使用默认的随机数生成器生成随机数并生成密钥。关于密钥算法相关的内容,在本文中并不探讨。
    2. 给当前密钥生成一个唯一的id,在后面用于生成文件名,保存在硬盘上。id使用的是uuid,生成的是一个形如62bc9340-f6a7-4d16-86f0-4be61920a06e这样的全球唯一的随机数
    3. 把密钥以文件形式保存在硬盘上。这块内容比较多,下面详细讲。
    4. 把公钥相关信息组合在一起,供调用者使用。

    我们再详细讲一下第3步,把密钥保存成文件。首先是生成文件名,keyFileName函数对应的代码如下:

    blockchain/pseudohsm/key.go#L96-L101

    // keyFileName implements the naming convention for keyfiles:
    // UTC--<created_at UTC ISO8601>-<address hex>
    func keyFileName(keyAlias string) string {
        ts := time.Now().UTC()
        return fmt.Sprintf("UTC--%s--%s", toISO8601(ts), keyAlias)
    }
    

    注意这里的参数keyAlias实际上应该是keyID,就是前面生成的uuid。写成alias有点误导,已经提交PR#922。最后生成的文件名,形如:UTC--2018-05-07T06-20-46.270917000Z--62bc9340-f6a7-4d16-86f0-4be61920a06e

    生成文件名之后,会通过h.keyStore.JoinPath把它放在合适的目录下。通常来说,这个目录是本机数据目录下的keystore,如果你是OSX系统,它应该在你的~/Library/Bytom/keystore,如果是别的,你可以通过下面的代码来确定DefaultDataDir()

    关于上面的保存密钥文件的目录,到底是怎么确定的,在代码中其实是有点绕的。不过如果你对这感兴趣的话,我相信你应该能自行找到,这里就不列出来了。如果找不到的话,可以试试以下关键字:pseudohsm.New(config.KeysDir())os.ExpandEnv(config.DefaultDataDir())DefaultDataDir()DefaultBaseConfig()

    在第3步的最后,会调用keyStore.StoreKey方法,把它保存成文件。该方法代码如下:

    blockchain/pseudohsm/keystore_passphrase.go#L67-L73

    func (ks keyStorePassphrase) StoreKey(filename string, key *XKey, auth string) error {
        keyjson, err := EncryptKey(key, auth, ks.scryptN, ks.scryptP)
        if err != nil {
            return err
        }
        return writeKeyFile(filename, keyjson)
    }
    

    EncryptKey里做了很多事情,把传进来的密钥及其它信息利用起来生成了JSON格式的信息,然后通过writeKeyFile把它保存硬盘上。所以在你的keystore目录下,会看到属于你的密钥文件。它们很重要,千万别误删了。

    a.wallet.Hsm.XCreate看完了,让我们回到a.pseudohsmCreateKey方法的最后一部分。可以看到,当成功生成key之后,会返回一个NewSuccessResponse(xpub),把与公钥相关的信息返回给前端。它会被jsonHandler自动转换成JSON格式,通过http返回过去。

    在这次的问题中,我们主要研究的是比原在通过web api接口/create-key接收到请求后,在内部做了哪些事,以及把密钥文件放在了哪里。其中涉及到密钥的算法(如ed25519)会在以后的文章中,进行详细的讨论。

  • 相关阅读:
    电力基本知识
    .net图表工具汇总
    最重要的十年做什么才不浪费?
    花10分钟看一看少走30年弯路
    给明年依然年轻的我们
    Qt经典—线程、事件与Qobject
    C#源码500份
    .NET 性能优化方法总结==转
    qt +ChartDirector 绘制图表
    创业者,你为什么这么着急?
  • 原文地址:https://www.cnblogs.com/bytom/p/9356808.html
Copyright © 2011-2022 走看看