zoukankan      html  css  js  c++  java
  • Deep Learning 学习随记(五)深度网络--续

    前面记到了深度网络这一章。当时觉得练习应该挺简单的,用不了多少时间,结果训练时间真够长的...途中debug的时候还手贱的clear了一下,又得从头开始运行。不过最终还是调试成功了,sigh~

    前一篇博文讲了深度网络的一些基本知识,这次讲义中的练习还是针对MNIST手写库,主要步骤是训练两个自编码器,然后进行softmax回归,最后再整体进行一次微调。

    训练自编码器以及softmax回归都是利用前面已经写好的代码。微调部分的代码其实就是一次反向传播。

    以下就是代码:

    主程序部分:

    stackedAEExercise.m

    %  For the purpose of completing the assignment, you do not need to
    %  change the code in this file. 
    %
    %%======================================================================
    %% STEP 0: Here we provide the relevant parameters values that will
    %  allow your sparse autoencoder to get good filters; you do not need to 
    %  change the parameters below.
    DISPLAY = true;
    inputSize = 28 * 28;
    numClasses = 10;
    hiddenSizeL1 = 200;    % Layer 1 Hidden Size
    hiddenSizeL2 = 200;    % Layer 2 Hidden Size
    sparsityParam = 0.1;   % desired average activation of the hidden units.
                           % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
                           %  in the lecture notes). 
    lambda = 3e-3;         % weight decay parameter       
    beta = 3;              % weight of sparsity penalty term       
    
    %%======================================================================
    %% STEP 1: Load data from the MNIST database
    %
    %  This loads our training data from the MNIST database files.
    
    % Load MNIST database files
    trainData = loadMNISTImages('mnist/train-images-idx3-ubyte');
    trainLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte');
    
    trainLabels(trainLabels == 0) = 10; % Remap 0 to 10 since our labels need to start from 1
    
    %%======================================================================
    %% STEP 2: Train the first sparse autoencoder
    %  This trains the first sparse autoencoder on the unlabelled STL training
    %  images.
    %  If you've correctly implemented sparseAutoencoderCost.m, you don't need
    %  to change anything here.
    
    
    %  Randomly initialize the parameters
    sae1Theta = initializeParameters(hiddenSizeL1, inputSize);
    
    %% ---------------------- YOUR CODE HERE  ---------------------------------
    %  Instructions: Train the first layer sparse autoencoder, this layer has
    %                an hidden size of "hiddenSizeL1"
    %                You should store the optimal parameters in sae1OptTheta
    
    %  Use minFunc to minimize the function
    addpath minFunc/
    options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
                              % function. Generally, for minFunc to work, you
                              % need a function pointer with two outputs: the
                              % function value and the gradient. In our problem,
                              % sparseAutoencoderCost.m satisfies this.
    options.maxIter = 400;      % Maximum number of iterations of L-BFGS to run 
    options.display = 'on';
    
    
    [sae1optTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
                                        inputSize, hiddenSizeL1, ...
                                        lambda, sparsityParam, ...
                                        beta, trainData), ...
                                    sae1Theta, options);
    
    %-------------------------------------------------------------------------
    
    
    %======================================================================
    % STEP 2: Train the second sparse autoencoder
     
    %This trains the second sparse autoencoder on the first autoencoder
     %featurse.
     %If you've correctly implemented sparseAutoencoderCost.m, you don't need
     %to change anything here.
    
    [sae1Features] = feedForwardAutoencoder(sae1optTheta, hiddenSizeL1, ...
                                            inputSize, trainData);
    
    %  Randomly initialize the parameters
    sae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1);
    
    %% ---------------------- YOUR CODE HERE  ---------------------------------
    %  Instructions: Train the second layer sparse autoencoder, this layer has
    %                an hidden size of "hiddenSizeL2" and an inputsize of
    %                "hiddenSizeL1"
    %
    %                You should store the optimal parameters in sae2OptTheta
    
    [sae2opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
                                        hiddenSizeL1, hiddenSizeL2, ...
                                        lambda, sparsityParam, ...
                                        beta, sae1Features), ...
                                    sae2Theta, options);
    
    %-------------------------------------------------------------------------
    
    %======================================================================
    %% STEP 3: Train the softmax classifier
    %  This trains the sparse autoencoder on the second autoencoder features.
    %  If you've correctly implemented softmaxCost.m, you don't need
    %  to change anything here.
    
    [sae2Features] = feedForwardAutoencoder(sae2opttheta, hiddenSizeL2, ...
                                            hiddenSizeL1, sae1Features);
    
    %  Randomly initialize the parameters
    saeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, 1);
    
    
    %% ---------------------- YOUR CODE HERE  ---------------------------------
    %  Instructions: Train the softmax classifier, the classifier takes in
    %                input of dimension "hiddenSizeL2" corresponding to the
    %                hidden layer size of the 2nd layer.
    %
    %                You should store the optimal parameters in saeSoftmaxOptTheta 
    %
    %  NOTE: If you used softmaxTrain to complete this part of the exercise,
    %        set saeSoftmaxOptTheta = softmaxModel.optTheta(:);
    
    options.maxIter = 100;
    softmax_lambda = 1e-4;
    
    numLabels = 10;
    softmaxModel = softmaxTrain(hiddenSizeL2, numLabels, softmax_lambda, ...
                                sae2Features, trainLabels, options);
    saeSoftmaxOptTheta = softmaxModel.optTheta(:);
    
    %-------------------------------------------------------------------------
    
    
    
    %======================================================================
    %% STEP 5: Finetune softmax model
    
    % Implement the stackedAECost to give the combined cost of the whole model
    % then run this cell.
    
    % Initialize the stack using the parameters learned
    inputSize = 28*28;
    stack = cell(2,1);
    stack{1}.w = reshape(sae1optTheta(1:hiddenSizeL1*inputSize), ...
                         hiddenSizeL1, inputSize);
    stack{1}.b = sae1optTheta(2*hiddenSizeL1*inputSize+1:2*hiddenSizeL1*inputSize+hiddenSizeL1);
    stack{2}.w = reshape(sae2opttheta(1:hiddenSizeL2*hiddenSizeL1), ...
                         hiddenSizeL2, hiddenSizeL1);
    stack{2}.b = sae2opttheta(2*hiddenSizeL2*hiddenSizeL1+1:2*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2);
    
    % Initialize the parameters for the deep model
    [stackparams, netconfig] = stack2params(stack);
    stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ];
    
    %% ---------------------- YOUR CODE HERE  ---------------------------------
    %  Instructions: Train the deep network, hidden size here refers to the '
    %                dimension of the input to the classifier, which corresponds 
    %                to "hiddenSizeL2".
    %
    %
    [stackedAEOptTheta, cost] = minFunc( @(p) stackedAECost(p, inputSize, hiddenSizeL2, ...
                                                  numClasses, netconfig, ...
                                                  lambda, trainData, trainLabels), ...
                                              stackedAETheta,options);
                                          
    % -------------------------------------------------------------------------
    
    
    
    %%======================================================================
    %% STEP 6: Test 
    %  Instructions: You will need to complete the code in stackedAEPredict.m
    %                before running this part of the code
    %
    
    % Get labelled test images
    % Note that we apply the same kind of preprocessing as the training set
    testData = loadMNISTImages('mnist/t10k-images-idx3-ubyte');
    testLabels = loadMNISTLabels('mnist/t10k-labels-idx1-ubyte');
    
    testLabels(testLabels == 0) = 10; % Remap 0 to 10
    
    [pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ...
                              numClasses, netconfig, testData);
    
    acc = mean(testLabels(:) == pred(:));
    fprintf('Before Finetuning Test Accuracy: %0.3f%%
    ', acc * 100);
    
    [pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ...
                              numClasses, netconfig, testData);
    
    acc = mean(testLabels(:) == pred(:));
    fprintf('After Finetuning Test Accuracy: %0.3f%%
    ', acc * 100);
    
    % Accuracy is the proportion of correctly classified images
    % The results for our implementation were:
    %
    % Before Finetuning Test Accuracy: 87.7%
    % After Finetuning Test Accuracy:  97.6%
    %
    % If your values are too low (accuracy less than 95%), you should check 
    % your code for errors, and make sure you are training on the 
    % entire data set of 60000 28x28 training images 
    % (unless you modified the loading code, this should be the case)

     微调部分的代价函数:

    stackedAECost.m

    function [ cost, grad ] = stackedAECost(theta, inputSize, hiddenSize, ...
                                                  numClasses, netconfig, ...
                                                  lambda, data, labels)
                                             
    % stackedAECost: Takes a trained softmaxTheta and a training data set with labels,
    % and returns cost and gradient using a stacked autoencoder model. Used for
    % finetuning.
                                             
    % theta: trained weights from the autoencoder
    % visibleSize: the number of input units
    % hiddenSize:  the number of hidden units *at the 2nd layer*
    % numClasses:  the number of categories
    % netconfig:   the network configuration of the stack
    % lambda:      the weight regularization penalty
    % data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. 
    % labels: A vector containing labels, where labels(i) is the label for the
    % i-th training example
    
    
    %% Unroll softmaxTheta parameter
    
    % We first extract the part which compute the softmax gradient
    softmaxTheta = reshape(theta(1:hiddenSize*numClasses), numClasses, hiddenSize);
    
    % Extract out the "stack"
    stack = params2stack(theta(hiddenSize*numClasses+1:end), netconfig);
    
    % You will need to compute the following gradients
    softmaxThetaGrad = zeros(size(softmaxTheta));
    stackgrad = cell(size(stack));
    for d = 1:numel(stack)
        stackgrad{d}.w = zeros(size(stack{d}.w));
        stackgrad{d}.b = zeros(size(stack{d}.b));
    end
    
    cost = 0; % You need to compute this
    
    % You might find these variables useful
    M = size(data, 2);
    groundTruth = full(sparse(labels, 1:M, 1));
    
    
    %% --------------------------- YOUR CODE HERE -----------------------------
    %  Instructions: Compute the cost function and gradient vector for 
    %                the stacked autoencoder.
    %
    %                You are given a stack variable which is a cell-array of
    %                the weights and biases for every layer. In particular, you
    %                can refer to the weights of Layer d, using stack{d}.w and
    %                the biases using stack{d}.b . To get the total number of
    %                layers, you can use numel(stack).
    %
    %                The last layer of the network is connected to the softmax
    %                classification layer, softmaxTheta.
    %
    %                You should compute the gradients for the softmaxTheta,
    %                storing that in softmaxThetaGrad. Similarly, you should
    %                compute the gradients for each layer in the stack, storing
    %                the gradients in stackgrad{d}.w and stackgrad{d}.b
    %                Note that the size of the matrices in stackgrad should
    %                match exactly that of the size of the matrices in stack.
    %
    %----------先计算a和z----------------
    d = numel(stack);          %stack的深度
    n = d+1;                   %网络层数
    a = cell(n,1);
    z = cell(n,1);
    a{1} = data;               %a{1}设成输入数据
    for l = 2:n                %给a{2,...n}和z{2,,...n}赋值
        z{l} = stack{l-1}.w * a{l-1} + repmat(stack{l-1}.b,[1,size(a{l-1},2)]);
        a{l} = sigmoid(z{l});
    end
    %------------------------------------
    
    %-------------计算softmax的代价函数和梯度函数-------------
    Ma = softmaxTheta * a{n};
    NorM = bsxfun(@minus, Ma, max(Ma, [], 1));  %归一化,每列减去此列的最大值,使得M的每个元素不至于太大。
    ExpM = exp(NorM);
    P = bsxfun(@rdivide,ExpM,sum(ExpM));      %概率
    cost = -1/M*(groundTruth(:)'*log(P(:)))+lambda/2*(softmaxTheta(:)'*softmaxTheta(:)); %代价函数
    softmaxThetaGrad =  -1/M*((groundTruth-P)*a{n}') + lambda*softmaxTheta;       %梯度
    %--------------------------------------------------------
    
    %--------------计算每一层的delta---------------------
    delta = cell(n);
    delta{n} = -softmaxTheta'*(groundTruth-P).*(a{n}).*(1-a{n});          %可以参照前面讲义BP算法的实现
    for l = n-1:-1:1
        delta{l} = stack{l}.w' * delta{l+1}.*(a{l}).*(1-a{l});
    end
    %----------------------------------------------------
    
    %--------------计算每一层的w和b的梯度-----------------
    for l = n-1:-1:1
        stackgrad{l}.w = (1/M)*delta{l+1}*a{l}';
        stackgrad{l}.b = (1/M)*sum(delta{l+1},2);
    end
    %----------------------------------------------------
    
    % -------------------------------------------------------------------------
    
    %% Roll gradient vector
    grad = [softmaxThetaGrad(:) ; stack2params(stackgrad)];
    
    end
    
    
    % You might find this useful
    function sigm = sigmoid(x)
        sigm = 1 ./ (1 + exp(-x));
    end

    预测函数:

    stackedAEPredict.m

    function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data)
                                             
    % stackedAEPredict: Takes a trained theta and a test data set,
    % and returns the predicted labels for each example.
                                             
    % theta: trained weights from the autoencoder
    % visibleSize: the number of input units
    % hiddenSize:  the number of hidden units *at the 2nd layer*
    % numClasses:  the number of categories
    % data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. 
    
    % Your code should produce the prediction matrix 
    % pred, where pred(i) is argmax_c P(y(c) | x(i)).
     
    %% Unroll theta parameter
    
    % We first extract the part which compute the softmax gradient
    softmaxTheta = reshape(theta(1:hiddenSize*numClasses), numClasses, hiddenSize);
    
    % Extract out the "stack"
    stack = params2stack(theta(hiddenSize*numClasses+1:end), netconfig);
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Compute pred using theta assuming that the labels start 
    %                from 1.
    %
    %----------先计算a和z----------------
    d = numel(stack);          %stack的深度
    n = d+1;                   %网络层数
    a = cell(n,1);
    z = cell(n,1);
    a{1} = data;               %a{1}设成输入数据
    for l = 2:n                %给a{2,...n}和z{2,,...n}赋值
        z{l} = stack{l-1}.w * a{l-1} + repmat(stack{l-1}.b,[1,size(a{l-1},2)]);
        a{l} = sigmoid(z{l});
    end
    %-------------------------------------
    M = softmaxTheta * a{n};
    [Y,pred] = max(M,[],1);
    
    % -----------------------------------------------------------
    
    end
    
    
    % You might find this useful
    function sigm = sigmoid(x)
        sigm = 1 ./ (1 + exp(-x));
    end

    最后结果:

    跟讲义以及程序注释中有点差别,特别是没有微调的结果,讲义中提到是不到百分之九十的,这里算出来是百分之九十四左右:

    但是微调后的结果基本是一样的。 

    PS:讲义地址:http://deeplearning.stanford.edu/wiki/index.php/Exercise:_Implement_deep_networks_for_digit_classification

  • 相关阅读:
    娃娃机 解题报告
    ecshop
    多字节字符串 函数
    电商中设置满包邮,满减等促销搞活动;电商平台同步到第三方,日志记录
    PHP文件操作
    apache重写字段详细说明
    httpc服务器错误类型大全
    正则入门简易
    php100 编程小技巧
    memcache
  • 原文地址:https://www.cnblogs.com/bzjia-blog/p/3402266.html
Copyright © 2011-2022 走看看