zoukankan      html  css  js  c++  java
  • loj#2538. 「PKUWC2018」Slay the Spire

    传送门

    首先,我们把所有的牌排个序,那么同一种牌肯定是尽量选大的。不难发现能多选强化牌一定要多选,比方说现在选了(a)张攻击牌和(b)张强化牌((a>1)),那么去掉攻击力最小的那张攻击牌,攻击力最小只会变为原来的一半(比方说两张攻击牌且攻击力一样),其他情况下都是大于原来的一半,而选择一张强化牌攻击力最少要翻倍,所以多选强化牌绝对不会变劣

    然后就是dp了……没我的事了看题解去……

    (F(x,y))表示选择(x)张牌,打出(y)张的所有方案的强化倍率的总和,(G(x,y))表示选择(x)张牌,打出(y)张的所有方案的攻击力之和,那么如果选了(i)张强化牌,如果(i<k)(ans+=F(i,i) imes G(m-i,k-i)),如果(igeq k),则(ans+=F(i,k-1) imes G(m-i,1))

    然后考虑如何计算(F,G),设(f(i,j))表示用了(i)张牌,最前面的那一张是第(j)张的强化倍率总和,设(sum[j]=sum_{d=1}^j f(i-1,d)),那么(f(i,j)=a[j] imes(sum[n]-sum[j]))。如果(sum[i])(g)的前缀和,那么(g)的转移就是(g(i,j)=(sum[n]-s[j])+a[j]*C_{n-j}^{i-1}),注意(g)的贡献是要求和,而且每一张牌都会有后面那个组合数的贡献

    这样的话就可以知道(F)(G)了$$F(x,y)=sum_{i=x-y+1}^{n-y+1}f(y,i) imes C_{i-1}^{x-y}$$

    [G(x,y)=sum_{i=x-y+1}^{n-y+1}g(y,i) imes C_{i-1}^{x-y} ]

    后面那个组合数是因为固定了用的,剩下不用的就可以随便选了

    如果(y=0),那么(F(x,y)=C_{n}^x),倍率都是(1)但是方案数要加起来

    //minamoto
    #include<bits/stdc++.h>
    #define R register
    #define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
    #define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
    #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
    using namespace std;
    char buf[1<<21],*p1=buf,*p2=buf;
    inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
    int read(){
        R int res,f=1;R char ch;
        while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
        for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
        return res*f;
    }
    char sr[1<<21],z[20];int C=-1,Z=0;
    inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
    void print(R int x){
        if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
        while(z[++Z]=x%10+48,x/=10);
        while(sr[++C]=z[Z],--Z);sr[++C]='
    ';
    }
    const int N=1505,P=998244353;
    inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
    inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
    inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
    int c[N<<1][N<<1],f[N][N],g[N][N],a[N],b[N],sum[N];
    int n,m,k,ans;
    int F(R int x,R int y){
    	if(y>x)return 0;if(!y)return c[n][x];
    	R int res=0;
    	fp(i,x-y+1,n-y+1)res=add(res,mul(f[y][i],c[i-1][x-y]));
    	return res;
    }
    int G(R int x,R int y){
    	if(y>x)return 0;
    	R int res=0;
    	fp(i,x-y+1,n-y+1)res=add(res,mul(g[y][i],c[i-1][x-y]));
    	return res;
    }
    inline void init(){
    	fp(i,0,3000){
    		c[i][0]=1;
    		fp(j,1,i)c[i][j]=add(c[i-1][j-1],c[i-1][j]);
    	}
    }
    int main(){
    //	freopen("testdata.in","r",stdin);
    	int T=read();init();
    	while(T--){
    		memset(f,0,sizeof(f));
    		memset(g,0,sizeof(g));
    		n=read(),m=read(),k=read();
    		fp(i,1,n)a[i]=read();
    		fp(i,1,n)b[i]=read();
    		sort(a+1,a+1+n),sort(b+1,b+1+n);
    		fp(i,1,n)f[1][i]=a[i],sum[i]=add(sum[i-1],a[i]);
    		fp(i,2,n){
    			fp(j,1,n-i+1)f[i][j]=mul(a[j],dec(sum[n],sum[j]));
    			fp(j,1,n)sum[j]=add(sum[j-1],f[i][j]);
    		}
    		fp(i,1,n)g[1][i]=b[i],sum[i]=add(sum[i-1],b[i]);
    		fp(i,2,n){
    			fp(j,1,n-i+1)g[i][j]=add(mul(b[j],c[n-j][i-1]),dec(sum[n],sum[j]));
    			fp(j,1,n)sum[j]=add(sum[j-1],g[i][j]);
    		}
    		ans=0;
    		fp(i,0,m-1)
    		if(i<k)ans=add(ans,mul(F(i,i),G(m-i,k-i)));
    		else ans=add(ans,mul(F(i,k-1),G(m-i,1)));
    		printf("%d
    ",ans);
    	}return 0;
    }
    
  • 相关阅读:
    本周总结
    每日日报
    每日日报
    每日日报
    每日日报
    每日日报
    每日日报
    Hibernate中session.createCriteria的用法
    Spring AOP 源码分析
    TCP的三次握手四次挥手
  • 原文地址:https://www.cnblogs.com/bztMinamoto/p/10201369.html
Copyright © 2011-2022 走看看