zoukankan      html  css  js  c++  java
  • 洛谷P4931 情侣?给我烧了!(加强版)(组合数学)

    题面

    传送门

    题解

    首先我们算出刚好有(k)对情侣的方案数

    (n)对情侣中选出(k)对,方案数为({nchoose k})

    (n)排座位中选出(k)排,方案数为({nchoose k})

    情侣之间可以交换座位,方案数为(2^k)

    座位之间可以随便排列,方案数为(k!)

    然后我们还需要强制剩下的(n-k)对情侣不匹配

    (g_i)表示(i)对情侣没有一对匹配的方案数

    第一排坐两个不是情侣的人的方案数有(2n(2n-2)),设这两个人为(A,B)

    然后考虑(A,B)的配偶,如果它们坐到了一起,那么方案数就是(2(n-1)g_{n-2})(2)表示它们可以交换,((n-1))表示枚举哪一排

    如果它们没有做到一起,那么可以看做它们组成了一对新的情侣并且强制它们不能坐到一起((n,ntr)?),这一部分方案数就是(g_{n-1})

    综上

    [g_n=2n(2n-2)(2(n-1)g_{n-2}+g_{n-1}) ]

    [Ans={nchoose k}{nchoose k}2^kk!g_{n-k} ]

    全部都预处理出来就行了

    //minamoto
    #include<bits/stdc++.h>
    #define R register
    #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
    #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
    #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
    using namespace std;
    char buf[1<<21],*p1=buf,*p2=buf;
    inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
    int read(){
        R int res,f=1;R char ch;
        while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
        for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
        return res*f;
    }
    char sr[1<<21],z[20];int K=-1,Z=0;
    inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
    void print(R int x){
        if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
        while(z[++Z]=x%10+48,x/=10);
        while(sr[++K]=z[Z],--Z);sr[++K]='
    ';
    }
    const int N=5e6+5,P=998244353,M=5e6;
    inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
    inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
    inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
    int ksm(R int x,R int y){
    	R int res=1;
    	for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
    	return res;
    }
    int fac[N],ifac[N],inv[N],g[N],bin[N],n,k;
    int main(){
    //	freopen("testdata.in","r",stdin);
    	fac[0]=fac[1]=ifac[0]=ifac[1]=bin[0]=g[0]=1,bin[1]=2,g[1]=0;
    	fp(i,2,M){
    		bin[i]=mul(bin[i-1],2),
    		fac[i]=mul(fac[i-1],i),
    		g[i]=(1ll*i*(i-1)<<2)%P*(2ll*(i-1)*g[i-2]%P+g[i-1])%P;
    	}
    	ifac[M]=ksm(fac[M],P-2);
    	fd(i,M-1,1)ifac[i]=mul(ifac[i+1],i+1);
    	for(int T=read();T;--T){
    		n=read(),k=read(),
    		print(1ll*fac[n]*ifac[k]%P*ifac[n-k]%P*fac[n]%P*ifac[n-k]%P*bin[k]%P*g[n-k]%P);
    	}
    	return Ot(),0;
    }
    
  • 相关阅读:
    BZOJ 1072: [SCOI2007]排列perm
    BZOJ 1071: [SCOI2007]组队
    HDP集群部署
    使用Kubeadm部署kubernetes集群
    Docker 私有仓库
    Docker Compose
    Dockerfile使用
    Docker应用部署(Mysql、tomcat、Redis、redis)
    Docker 容器的数据卷 以及 数据卷容器
    Docker 服务、镜像、容器简单命令使用
  • 原文地址:https://www.cnblogs.com/bztMinamoto/p/10557954.html
Copyright © 2011-2022 走看看