zoukankan      html  css  js  c++  java
  • 【loj#6503.】「雅礼集训 2018 Day4」Magic(生成函数+容斥)

    题面

    传送门

    题解

    复杂度比较迷啊……

    以下以(n)表示颜色总数,(m)表示总的卡牌数

    严格(k)对比较难算,我们考虑容斥

    首先有(i)对就代表整个序列被分成了(m-i)块互不相同的部分,那么我们从被分成了多少块这个角度来考虑

    (f_{i,j})表示考虑前(i)中颜色被分成了(j)块的方案(这里的(j)块不一定满足相邻两块颜色不同),那么转移就是

    [f_{i,j}=sum_k f_{i-1,j-k}{a_i-1choose k-1}{jchoose k} ]

    也就是相当于我们枚举一下第(i)种颜色分成了(k)块,那么方案数是({a_i-1choose k-1}),然后一共({jchoose k})表示(k)块和(j-k)块之间交叉放置的方案数

    初值显然为

    [f_{1,i}={a_1-1choose i-1} ]

    如果我们记

    [F_i=sum_{i=0}^infty {a_i-1choose i-1}{x^iover i!} ]

    那么发现答案最终的(f_n)的指数型生成函数就是

    [prod_{i=1}^nF_i ]

    分治(NTT)即可

    最后求出了(f_n),那么(f_{n,i})表示(n)种颜色分成(i)块的方案数,即有(m-i)个魔法对的方案数

    我们记(g_i=f_{n,m-i}),那么通过容斥原理可得最终的答案为

    [sum_{i=k}^m(-1)^{i-k}{ichoose k}g_i ]

    复杂度的话,因为一层(sum a_i=m),所以分治的时候一层里的复杂度为(O(nlog n)),总共(O(log n))层,复杂度为(O(nlog^2n))

    //minamoto
    #include<bits/stdc++.h>
    #define R register
    #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
    #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
    #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
    using namespace std;
    char buf[1<<21],*p1=buf,*p2=buf;
    inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
    int read(){
        R int res,f=1;R char ch;
        while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
        for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
        return res*f;
    }
    const int N=(1<<18)+5,P=998244353;
    inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
    inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
    inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
    int ksm(R int x,R int y){
    	R int res=1;
    	for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
    	return res;
    }
    int r[21][N],rt[2][N],inv[N],fac[N],ifac[N],lg[N],ilim[21];
    int lim,d,n,m,k;
    inline int C(R int n,R int m){return m>n?0:1ll*fac[n]*ifac[m]%P*ifac[n-m]%P;}
    void Pre(){
    	fp(d,0,18){
    		fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
    		lg[1<<d]=d,ilim[d]=ksm(1<<d,P-2);
    	}
    	inv[0]=inv[1]=fac[0]=fac[1]=ifac[0]=ifac[1]=1;
    	fp(i,1,m)fac[i]=mul(fac[i-1],i);
    	ifac[m]=ksm(fac[m],P-2);fd(i,m-1,1)ifac[i]=mul(ifac[i+1],i+1);
    	for(R int t=(P-1)>>1,i=1,x,y;i<262144;i<<=1,t>>=1){
    		x=ksm(3,t),y=ksm(332748118,t),rt[0][i]=rt[1][i]=1;
    		fp(k,1,i-1)
    			rt[1][i+k]=mul(rt[1][i+k-1],x),
    			rt[0][i+k]=mul(rt[0][i+k-1],y);
    	}
    }
    inline void init(R int len){lim=1,d=0;while(lim<len)lim<<=1,++d;}
    void NTT(int *A,int ty){
    	fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
    	for(R int mid=1;mid<lim;mid<<=1)
    		for(R int j=0,t;j<lim;j+=(mid<<1))
    			fp(k,0,mid-1)
    				A[j+k+mid]=dec(A[j+k],t=mul(rt[ty][mid+k],A[j+k+mid])),
    				A[j+k]=add(A[j+k],t);
    	if(!ty)fp(i,0,lim-1)A[i]=mul(ilim[d],A[i]);
    }
    int D[21][N],deg[21],a[N];
    void solve(int p,int l,int r){
    	if(l==r){
    		D[p][0]=0;
    		fp(i,1,a[r])D[p][i]=mul(C(a[r]-1,i-1),ifac[i]);
    		deg[p]=a[r];
    		return;
    	}
    	int mid=(l+r)>>1;
    	solve(p,l,mid),solve(p+1,mid+1,r);
    	static int A[N],B[N];init(deg[p]+deg[p+1]+1);
    	fp(i,0,deg[p])A[i]=D[p][i];fp(i,deg[p]+1,lim-1)A[i]=0;
    	fp(i,0,deg[p+1])B[i]=D[p+1][i];fp(i,deg[p+1]+1,lim-1)B[i]=0;
    	NTT(A,1),NTT(B,1);
    	fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
    	NTT(A,0);
    	deg[p]+=deg[p+1];
    	fp(i,0,deg[p])D[p][i]=A[i];
    	fp(i,deg[p]+1,lim-1)D[p][i]=0;
    }
    int f[N],res;
    int main(){
    //	freopen("testdata.in","r",stdin);
    	n=read(),m=read(),k=read(),Pre();
    	fp(i,1,n)a[i]=read();
    	solve(1,1,n);
    	fp(i,0,m-1)f[i]=mul(fac[m-i],D[1][m-i]);
    	fp(i,k,m)res=add(res,((i-k)&1?P-1ll:1ll)*f[i]%P*C(i,k)%P);
    	printf("%d
    ",res);
    	return 0;
    }
    
  • 相关阅读:
    Cryptocurrency Security Compliance
    HOW TO ACHIEVE CRYPTOCURRENCY SECURITY STANDARD (CCSS) COMPLIANCE
    Cryptocurrency Security Guide@BitIRA
    How to Trade Cryptocurrency – The Complete Guide
    7 Things I Learned From Porting a C Crypto Library to Rust
    25 Places To Find Quantitative Trading Strategies
    JavaScript-Runoob-AJAX:服务器响应
    JavaScript-Runoob-AJAX:向服务器发送请求
    JavaScript-Runoob-AJAX:创建 XMLHttpRequest 对象
    JavaScript-Runoob-AJAX:AJAX 实例
  • 原文地址:https://www.cnblogs.com/bztMinamoto/p/10583889.html
Copyright © 2011-2022 走看看