zoukankan      html  css  js  c++  java
  • 牛客挑战赛30D 小A的昆特牌(组合数学)

    题面

    传送门

    题解

    很容易写出一个暴力

    [sum_{i=l}^r {i+n-1choose n-1}{s-i+mchoose m} ]

    即枚举选了多少个步兵,然后用插板法算出方案数

    我们对这个换一种角度考虑,可以看做是从((0,0))走到((s,n+m)),且必须经过((l,n),(r,n))这条直线的方案数

    这个就等价于第(l)步向右走时纵坐标在((0,n-1))的方案数减去第(r+1)步向右走时在((0,n-1))的方案数

    ps:关于第(p)步向右走时在((0,n-1))的方案的计算的话,我们枚举一下就行了,即为

    [sum_{i=0}^{n-1}{p-1+ichoose i}{s+n+m-p-ichoose n+m-i} ]

    其中前面是(p-1+i)是因为最后一步强制向右走

    //minamoto
    #include<bits/stdc++.h>
    #define R register
    #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
    #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
    #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
    using namespace std;
    const int N=2e7+5,P=998244353;
    inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
    inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
    inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
    int inv[N],f[N],g[N];
    int n,m,s,l,r;
    int calc(R int p){
    	if(p>s)return 0;
    	int res=0;
    	f[0]=g[0]=1;
    	fp(i,1,n+m){
    		g[i]=1ll*g[i-1]*(p+i-1)%P*inv[i]%P,
    		f[i]=1ll*f[i-1]*(s-p+i)%P*inv[i]%P;
    	}
    	fp(i,0,n-1)res=add(res,mul(f[n+m-i],g[i]));
    	return res;
    }
    int main(){
    //	freopen("testdata.in","r",stdin);
    	scanf("%d%d%d%d%d",&n,&m,&s,&l,&r);
    	inv[0]=inv[1]=1;fp(i,2,N-1)inv[i]=1ll*(P-P/i)*inv[P%i]%P;
    	printf("%d
    ",dec(calc(l),calc(r+1)));
    	return 0;
    }
    
  • 相关阅读:
    CentOS7 安装jdk8
    CentOS7 安装和配置 mysql5.7
    CentOS7 安装和配置Tomcat
    vi编辑器设置行号可见
    前端基础-css(2)
    前端基础-css(1)
    前端基础-html(3)
    前端基础-html(2)
    前端基础-html(1)
    IO多路复用、协程
  • 原文地址:https://www.cnblogs.com/bztMinamoto/p/10594209.html
Copyright © 2011-2022 走看看