zoukankan      html  css  js  c++  java
  • 洛谷P5158 【模板】多项式快速插值

    题面

    传送门

    前置芝士

    拉格朗日插值多项式多点求值

    题解

    首先根据拉格朗日插值公式我们可以暴力(O(n^2))插出这个多项式,然而这显然是(gg)

    那么看看怎么优化,先来看一看拉格朗日插值的公式

    [f(x)=sum_{i = 1}^{n} y_i prod_{i ot = j} frac{x - x_j}{x_i - x_j} ]

    转化一下

    [f(x)=sum_{i = 1}^{n}{ y_iover prod_{i ot = j}{x_i - x_j}} prod_{i ot = j}(x - x_j) ]

    来考虑一下({ y_iover prod_{i ot = j}{x_i - x_j}})这个东西,上面是个常数,那么只考虑下面。如果我们设多项式(g(x)=prod_{i=1}^n (x-x_i)),那么下面那个东西就是({g(x_i)over (x-x_i)})

    这分子分母全为(0)我怎么求啊……

    根据我也不知道是啥的洛必达法则,如果

    [lim_{x o a}f(x)=0,lim_{x o a}g(x)=0 ]

    则有

    [lim_{x o a}{f(x)over g(x)}=lim_{x o a}{f'(x)over g'(x)} ]

    那么我们代入之后可以发现({g(x_i)over (x-x_i)}=g'(x_i))

    先分治(NTT)算出(g),然后多点求值把每个点处的值算出来就好了

    那么接下来我们就考虑分治,设(f_{l,r})表示((x_l,y_l),(x_r,y_r))这些点算出来的答案,则有

    [egin{aligned} f_{l,r} &=sum_{i = l}^{r}{ y_iover g'(x_i)} prod_{j=l,i ot = j}^r(x - x_j)\ &=prod_{j=mid+1}^r(x - x_j)sum_{i = l}^{mid}{ y_iover g'(x_i)} prod_{j=l,i ot = j}^{mid}(x - x_j)+prod_{j=l}^{mid}(x - x_j)sum_{i = mid+1}^{r}{ y_iover g'(x_i)} prod_{j=mid+1,i ot = j}^{r}(x - x_j)\ &=prod_{j=mid+1}^r(x - x_j)f_{l,mid}+prod_{j=l}^{mid}(x - x_j)f_{mid+1,r}\ end{aligned} ]

    然后没有然后了
    复杂度为(O(nlog^2n))

    //minamoto
    #include<bits/stdc++.h>
    #define R register
    #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
    #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
    #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
    using namespace std;
    char buf[1<<21],*p1=buf,*p2=buf;
    inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
    int read(){
        R int res,f=1;R char ch;
        while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
        for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
        return res*f;
    }
    char sr[1<<21],z[20];int C=-1,Z=0;
    inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
    void print(R int x){
        if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
        while(z[++Z]=x%10+48,x/=10);
        while(sr[++C]=z[Z],--Z);sr[++C]=' ';
    }
    const int N=(1<<18)+5,P=998244353;
    inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
    inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
    inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
    int ksm(R int x,R int y){
    	R int res=1;
    	for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
    	return res;
    }
    int r[19][N],w[2][N],lg[N],inv[19];
    void Pre(){
    	fp(d,1,18){
    		fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
    		lg[1<<d]=d,inv[d]=ksm(1<<d,P-2);
    	}
    	for(R int t=(P-1)>>1,i=1,x,y;i<262144;i<<=1,t>>=1){
    		x=ksm(3,t),y=ksm(332748118,t),w[0][i]=w[1][i]=1;
    		fp(k,1,i-1)
    			w[1][k+i]=mul(w[1][k+i-1],x),
    			w[0][k+i]=mul(w[0][k+i-1],y);
    	}
    }
    int lim,d,n,m;
    inline void init(R int len){lim=1,d=0;while(lim<len)lim<<=1,++d;}
    void NTT(int *A,int ty){
    	fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
    	for(R int mid=1;mid<lim;mid<<=1)
    		for(R int j=0,t;j<lim;j+=(mid<<1))
    			fp(k,0,mid-1)
    				A[j+k+mid]=dec(A[j+k],t=mul(w[ty][mid+k],A[j+k+mid])),
    				A[j+k]=add(A[j+k],t);
    	if(!ty)fp(i,0,lim-1)A[i]=mul(A[i],inv[d]);
    }
    void Inv(int *a,int *b,int len){
    	if(len==1)return b[0]=ksm(a[0],P-2),void();
    	Inv(a,b,len>>1),lim=(len<<1),d=lg[lim];
    	static int A[N],B[N];
    	fp(i,0,len-1)A[i]=a[i],B[i]=b[i];fp(i,len,lim-1)A[i]=B[i]=0;
    	NTT(A,1),NTT(B,1);
    	fp(i,0,lim-1)A[i]=mul(A[i],mul(B[i],B[i]));
    	NTT(A,0);
    	fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),A[i]);
    	fp(i,len,lim-1)b[i]=0;
    }
    struct node{
    	node *lc,*rc;vector<int>vec;int deg;
    	void Mod(const int *a,int *r,int n){
    		static int A[N],B[N],D[N];
    		int len=1;while(len<=n-deg)len<<=1;
    		fp(i,0,n)A[i]=a[n-i];fp(i,0,deg)B[i]=vec[deg-i];
    		fp(i,n-deg+1,len-1)B[i]=0;
    		Inv(B,D,len);
    		lim=(len<<1),d=lg[lim];
    		fp(i,n-deg+1,lim-1)A[i]=D[i]=0;
    		NTT(A,1),NTT(D,1);
    		fp(i,0,lim-1)A[i]=mul(A[i],D[i]);
    		NTT(A,0);
    		reverse(A,A+n-deg+1);
    		init(n+1);
    		fp(i,n-deg+1,lim-1)A[i]=0;
    		fp(i,0,deg)B[i]=vec[i];fp(i,deg+1,lim-1)B[i]=0;
    		NTT(A,1),NTT(B,1);
    		fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
    		NTT(A,0);
    		fp(i,0,deg-1)r[i]=dec(a[i],A[i]);
    	}
        void Mul(){
            static int A[N],B[N];deg=lc->deg+rc->deg,vec.resize(deg+1),init(deg+1);
            fp(i,0,lc->deg)A[i]=lc->vec[i];fp(i,lc->deg+1,lim-1)A[i]=0;
            fp(i,0,rc->deg)B[i]=rc->vec[i];fp(i,rc->deg+1,lim-1)B[i]=0;
            NTT(A,1),NTT(B,1);
            fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
            NTT(A,0);
            fp(i,0,deg)vec[i]=A[i];
        }
    }pool[N],*rt;
    struct QAQ{
    	QAQ *lc,*rc;vector<int>vec;int l,r;
    	void Mul(node* p){
    		static int A[N],B[N],C[N],D[N];
    		int mid=(l+r)>>1;init(r-l+1+1);
    		fp(i,0,mid-l+1)A[i]=lc->vec[i],C[i]=p->lc->vec[i];
    		fp(i,mid-l+2,lim-1)A[i]=C[i]=0;
    		fp(i,0,r-mid)B[i]=rc->vec[i],D[i]=p->rc->vec[i];
    		fp(i,r-mid+1,lim-1)B[i]=D[i]=0;
    		NTT(A,1),NTT(B,1),NTT(C,1),NTT(D,1);
    		fp(i,0,lim-1)A[i]=add(mul(A[i],D[i]),mul(B[i],C[i]));
    		NTT(A,0);vec.resize(r-l+2);
    		fp(i,0,r-l+1)vec[i]=A[i];
    	}
    }o[N],*qwq;
    int a[N],tot,cnt;
    inline node* newnode(){return &pool[tot++];}
    inline QAQ* newQAQ(){return &o[cnt++];}
    void solve(node* &p,int l,int r){
    	p=newnode();
    	if(l==r)return p->deg=1,p->vec.resize(2),p->vec[0]=P-a[l],p->vec[1]=1,void();
    	int mid=(l+r)>>1;
    	solve(p->lc,l,mid),solve(p->rc,mid+1,r);
    	p->Mul();
    }
    int b[25],f[N];
    void calc(node* p,int l,int r,const int *A){
    	if(r-l<=512){
    		fp(i,l,r){
    			int x=a[i],c1,c2,c3,c4,now=A[r-l];
    			b[0]=1;fp(j,1,16)b[j]=mul(b[j-1],x);
    			for(R int j=r-l-1;j-15>=0;j-=16){
    				c1=(1ll*now*b[16]+1ll*A[j]*b[15]+1ll*A[j-1]*b[14]+1ll*A[j-2]*b[13])%P,
    				c2=(1ll*A[j-3]*b[12]+1ll*A[j-4]*b[11]+1ll*A[j-5]*b[10]+1ll*A[j-6]*b[9])%P,
    				c3=(1ll*A[j-7]*b[8]+1ll*A[j-8]*b[7]+1ll*A[j-9]*b[6]+1ll*A[j-10]*b[5])%P,
    				c4=(1ll*A[j-11]*b[4]+1ll*A[j-12]*b[3]+1ll*A[j-13]*b[2]+1ll*A[j-14]*b[1])%P,
    				now=(0ll+c1+c2+c3+c4+A[j-15])%P;
    			}
    			fd(j,(r-l)%16-1,0)now=(1ll*now*x+A[j])%P;
    			f[i]=now;
    		}
    		return;
    	}
    	int mid=(l+r)>>1,b[p->deg+1];
    	p->lc->Mod(A,b,p->deg-1),calc(p->lc,l,mid,b);
    	p->rc->Mod(A,b,p->deg-1),calc(p->rc,mid+1,r,b);
    }
    int x[N],y[N],A[N];
    void loli(QAQ* &qwq,node *p,int l,int r){
    	qwq=newQAQ(),qwq->l=l,qwq->r=r;
    	if(l==r)return qwq->vec.resize(2),qwq->vec[0]=mul(y[l],ksm(f[l],P-2)),qwq->vec[1]=0,void();
    	int mid=(l+r)>>1;
    	loli(qwq->lc,p->lc,l,mid),loli(qwq->rc,p->rc,mid+1,r);
    	qwq->Mul(p);
    }
    int main(){
    //	freopen("testdata.in","r",stdin);
    	n=read(),Pre();
    	fp(i,1,n)x[i]=a[i]=read(),y[i]=read();
    	solve(rt,1,n);
    	fp(i,1,n)A[i-1]=mul(rt->vec[i],i);A[n]=0;
    	calc(rt,1,n,A);
    	loli(qwq,rt,1,n);
    	fp(i,0,n-1)print(qwq->vec[i]);
    	return Ot(),0;
    }
    
  • 相关阅读:
    C,LINUX,数据结构部分
    LINUX应用开发工程师职位(含答案)
    INT32 System_UserKeyFilter(NVTEVT evt, UINT32 paramNum, UINT32 *paramArray)
    屏幕调试
    1.ARM嵌入式体系结构与接口技术(Cortex-A8版)
    NT9666X调试log
    DemoKit编译过程错误
    selenium 代理设置
    pandas 轮询dataframe
    Spring 定时任务
  • 原文地址:https://www.cnblogs.com/bztMinamoto/p/10615847.html
Copyright © 2011-2022 走看看