#coding:utf-8 from os import path from scipy.misc import imread import matplotlib.pyplot as plt import jieba from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator stopwords = {} def importStopword(filename=''): global stopwords f = open(filename, 'r', encoding='utf-8') line = f.readline().rstrip() while line: stopwords.setdefault(line, 0) stopwords[line] = 1 line = f.readline().rstrip() f.close() def processChinese(text): seg_generator = jieba.cut(text) # 使用结巴分词,也可以不使用 seg_list = [i for i in seg_generator if i not in stopwords] seg_list = [i for i in seg_list if i != u' '] seg_list = r' '.join(seg_list) return seg_list importStopword(filename='./stopwords.txt') # 获取当前文件路径 # __file__ 为当前文件, 在ide中运行此行会报错,可改为 # d = path.dirname('.') d = path.dirname(__file__) text = open(path.join(d, 'loves.txt'),encoding ='utf-8').read() print(text) #如果是中文 text = processChinese(text)#中文不好分词,使用Jieba分词进行 # read the mask / color image # taken from http://jirkavinse.deviantart.com/art/quot-Real-Life-quot-Alice-282261010 # 设置背景图片 back_coloring = imread(path.join(d, "./image/love.jpg")) wc = WordCloud( font_path='simhei.ttf',#设置字体 background_color="white", #背景颜色 max_words=2000,# 词云显示的最大词数 mask=back_coloring,#设置背景图片 #max_font_size=100, #字体最大值 random_state=42, ) # 生成词云, 可以用generate输入全部文本(中文不好分词),也可以我们计算好词频后使用generate_from_frequencies函数 wc.generate(text) # wc.generate_from_frequencies(txt_freq) # txt_freq例子为[('词a', 100),('词b', 90),('词c', 80)] # 从背景图片生成颜色值 image_colors = ImageColorGenerator(back_coloring) plt.figure() # 以下代码显示图片 plt.imshow(wc) plt.axis("off") plt.show() # 绘制词云 '''plt.figure() # recolor wordcloud and show # we could also give color_func=image_colors directly in the constructor plt.imshow(wc.recolor(color_func=image_colors)) plt.axis("off") # 绘制背景图片为颜色的图片 plt.figure() plt.imshow(alice_coloring, cmap=plt.cm.gray) plt.axis("off") plt.show() ''' # 保存图片 wc.to_file(path.join(d, "名称.png"))