题目链接:http://poj.org/problem?id=2155
Matrix
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 34697 | Accepted: 12542 |
Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases.
There is a blank line between every two continuous test cases.
Sample Input
1 2 10 C 2 1 2 2 Q 2 2 C 2 1 2 1 Q 1 1 C 1 1 2 1 C 1 2 1 2 C 1 1 2 2 Q 1 1 C 1 1 2 1 Q 2 1
Sample Output
1 0 0 1
Source
题目大意:T组样例 ,N*N的矩阵 M次操作 为C时 修改矩阵(x1,y1) (x2,y2)的元素 1变0 0变1 为Q时 询问坐标为(x1,y1)的位置 是什么
思路:这是第一道树状数组二维的题,说实话并没有想到怎么写,看了人家代码,果然牛逼。 复杂度应该是M*(log N)*(log N)吧 ,其实有两种写法,一种是往后存储 一种是往前存储
看代码:
1.往前存储的
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long LL; const LL mod=1e9+7; const LL INF=1e9+7; const int maxn=1e3+50; int c[maxn][maxn]; int N,M; int lowbit(int x) { return x&(-x); } void update(int x,int y) { for(int i=x;i>0;i-=lowbit(i)) { for(int j=y;j>0;j-=lowbit(j)) c[i][j]++; } } int sum(int x,int y) { int ret=0; for(int i=x;i<=N;i+=lowbit(i)) { for(int j=y;j<=N;j+=lowbit(j)) ret+=c[i][j]; } return ret%2; } int main() { int T; scanf("%d",&T); while(T--) { memset(c,0,sizeof(c)); char c; scanf("%d%d",&N,&M); while(M--) { getchar(); scanf("%c",&c); if(c=='C') { int x1,y1,x2,y2; scanf("%d%d%d%d",&x1,&y1,&x2,&y2); //这是精髓了 其实包围起来的就是我们所要修改的矩阵 如果想不通的话 看一下一维的是怎么存储区间问题的 update(x1-1,y1-1); update(x1-1,y2); update(x2,y1-1); update(x2,y2); } else { int x1,y1; scanf("%d%d",&x1,&y1); printf("%d ",sum(x1,y1)); } } if(T!=0) printf(" "); } return 0; }
2.往后存储的
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long LL; const LL mod=1e9+7; const LL INF=1e9+7; const int maxn=1e3+50; int c[maxn][maxn]; int lowbit(int x) { return x&(-x); } void update(int x,int y) { for(int i=x;i<1005;i+=lowbit(i)) { for(int j=y;j<1005;j+=lowbit(j)) c[i][j]++; } } int sum(int x,int y) { int ret=0; for(int i=x;i>0;i-=lowbit(i)) { for(int j=y;j>0;j-=lowbit(j)) ret+=c[i][j]; } return ret%2; } int main() { int T; scanf("%d",&T); while(T--) { memset(c,0,sizeof(c)); int N,M; char c; scanf("%d%d",&N,&M); while(M--) { getchar(); scanf("%c",&c); if(c=='C') { int x1,y1,x2,y2; scanf("%d%d%d%d",&x1,&y1,&x2,&y2); update(x1,y1); update(x1,y2+1); update(x2+1,y1); update(x2+1,y2+1); } else { int x1,y1; scanf("%d%d",&x1,&y1); printf("%d ",sum(x1,y1)); } } if(T!=0) printf(" "); } return 0; }