zoukankan      html  css  js  c++  java
  • Kaggle-pandas(5)

    Data-types-and-missing-values

    教程

    Dtypes

    DataFrame或Series中列的数据类型称为dtype。
    您可以使用dtype属性来获取特定列的类型。 例如,我们可以在review的DataFrame中获得价格列的dtype:

    reviews.price.dtype

    另外,dtypes属性返回DataFrame中每一列的dtype:

    reviews.dtypes

     数据类型告诉我们有关pandas如何在内部存储数据的信息。 float64表示它使用的是64位浮点数。 int64表示大小类似的整数,依此类推。
    需要牢记的一个独特之处(在这里非常清楚地显示)是,完全由字符串组成的列没有自己的类型; 相反,它们被赋予对象类型。
    只要使用astype()函数,只要有这种转换意义,就可以将一种类型的列转换为另一种类型。 例如,我们可以将points列从其现有的int64数据类型转换为float64数据类型。

    reviews.points.astype('float64')

    Missing data

    缺少值的条目将被赋予值NaN,是“非数字”的缩写。 出于技术原因,这些NaN值始终为float64 dtype。
    熊猫提供了一些针对丢失数据的方法。 要选择NaN条目,可以使用pd.isnull()(或其配套的pd.notnull())。 这意味着可以这样使用:

    reviews[pd.isnull(reviews.country)]

    替换缺失值是常见的操作。 Pandas为这个问题提供了一个非常方便的方法:fillna()。 fillna()提供了几种缓解此类数据的策略。 例如,我们可以简单地将每个NaN替换为“未知”:替换缺失值是常见的操作。 Pandas为这个问题提供了一个非常方便的方法:fillna()。 fillna()提供了几种缓解此类数据的策略。 例如,我们可以简单地将每个NaN替换为“未知”

    练习

    1.

    What is the data type of the `points` column in the dataset?

    # Your code here
    dtype = reviews.points.dtype
    
    # Check your answer
    q1.check()

    2.

    Create a Series from entries in the points column, but convert the entries to strings. Hint: strings are str in native Python.

    point_strings =reviews.points.astype('str')
    
    # Check your answer
    q2.check()

    3.

    Sometimes the price column is null. How many reviews in the dataset are missing a price?

    missing_price_reviews = reviews[reviews.price.isnull()]
    n_missing_prices = len(missing_price_reviews)
    # print(n_missing_prices)
    # Check your answer
    q3.check()

    4.

    What are the most common wine-producing regions? Create a Series counting the number of times each value occurs in the region_1 field. This field is often missing data, so replace missing values with Unknown. Sort in descending order. Your output should look something like this:

    tmp=reviews.region_1.fillna("Unknown")
    reviews_per_region = reviews.fillna("Unknown").region_1.value_counts().sort_values(ascending=False)
    print(reviews_per_region)
    # Check your answer
    q4.check()
  • 相关阅读:
    python学习笔记3:基础(元组、字符串、列表、字典)
    python学习笔记2:基础(邮件发送)
    pycharm版本控制
    Pycharm版本控制之本地Git用法
    GitHub使用
    qtp简单说明
    查询Activity方便一点的方法
    appium基础框架
    loadrunner基本流程
    python下的unittest框架
  • 原文地址:https://www.cnblogs.com/caishunzhe/p/13430703.html
Copyright © 2011-2022 走看看