数据类型
常见数据类型
Python 原生的数据类型相对较少, bool、int、float、str等。这在不需要关心数据在计算机中表示的所有方式的应用中是方便的。然而,对于科学计算,通常需要更多的控制。为了加以区分 numpy 在这些类型名称末尾都加了“_”。
下表列举了常用 numpy 基本类型。
类型 | 备注 | 说明 |
---|---|---|
bool_ = bool8 | 8位 | 布尔类型 |
int8 = byte | 8位 | 整型 |
int16 = short | 16位 | 整型 |
int32 = intc | 32位 | 整型 |
int_ = int64 = long = int0 = intp | 64位 | 整型 |
uint8 = ubyte | 8位 | 无符号整型 |
uint16 = ushort | 16位 | 无符号整型 |
uint32 = uintc | 32位 | 无符号整型 |
uint64 = uintp = uint0 = uint | 64位 | 无符号整型 |
float16 = half | 16位 | 浮点型 |
float32 = single | 32位 | 浮点型 |
float_ = float64 = double | 64位 | 浮点型 |
str_ = unicode_ = str0 = unicode | |Unicode 字符串 | |
datetime64 | |日期时间类型 | |
timedelta64 | |表示两个时间之间的间隔 |
创建数据类型
numpy 的数值类型实际上是 dtype 对象的实例。
class dtype(object):
def __init__(self, obj, align=False, copy=False):
pass
每个内建类型都有一个唯一定义它的字符代码,如下:
字符 | 对应类型 | 备注 |
---|---|---|
b | boolean | 'b1' |
i | signed integer | 'i1', 'i2', 'i4', 'i8' |
u | unsigned integer | 'u1', 'u2' ,'u4' ,'u8' |
f | floating-point | 'f2', 'f4', 'f8' |
c | complex floating-point | |
m | timedelta64 | 表示两个时间之间的间隔 |
M | datetime64 | 日期时间类型 |
O | object | |
S | (byte-)string | S3表示长度为3的字符串 |
U | Unicode | Unicode 字符串 |
V | void |
【例】
import numpy as np
a = np.dtype('b1')
print(a.type) # <class 'numpy.bool_'>
print(a.itemsize) # 1
a = np.dtype('i1')
print(a.type) # <class 'numpy.int8'>
print(a.itemsize) # 1
a = np.dtype('i2')
print(a.type) # <class 'numpy.int16'>
print(a.itemsize) # 2
a = np.dtype('i4')
print(a.type) # <class 'numpy.int32'>
print(a.itemsize) # 4
a = np.dtype('i8')
print(a.type) # <class 'numpy.int64'>
print(a.itemsize) # 8
a = np.dtype('u1')
print(a.type) # <class 'numpy.uint8'>
print(a.itemsize) # 1
a = np.dtype('u2')
print(a.type) # <class 'numpy.uint16'>
print(a.itemsize) # 2
a = np.dtype('u4')
print(a.type) # <class 'numpy.uint32'>
print(a.itemsize) # 4
a = np.dtype('u8')
print(a.type) # <class 'numpy.uint64'>
print(a.itemsize) # 8
a = np.dtype('f2')
print(a.type) # <class 'numpy.float16'>
print(a.itemsize) # 2
a = np.dtype('f4')
print(a.type) # <class 'numpy.float32'>
print(a.itemsize) # 4
a = np.dtype('f8')
print(a.type) # <class 'numpy.float64'>
print(a.itemsize) # 8
a = np.dtype('S')
print(a.type) # <class 'numpy.bytes_'>
print(a.itemsize) # 0
a = np.dtype('S3')
print(a.type) # <class 'numpy.bytes_'>
print(a.itemsize) # 3
a = np.dtype('U3')
print(a.type) # <class 'numpy.str_'>
print(a.itemsize) # 12
数据类型信息
Python 的浮点数通常是64位浮点数,几乎等同于 np.float64
。
NumPy和Python整数类型的行为在整数溢出方面存在显着差异,与 NumPy 不同,Python 的int
是灵活的。这意味着Python整数可以扩展以容纳任何整数并且不会溢出。
Machine limits for integer types.
class iinfo(object):
def __init__(self, int_type):
pass
def min(self):
pass
def max(self):
pass
【例】
import numpy as np
ii16 = np.iinfo(np.int16)
print(ii16.min) # -32768
print(ii16.max) # 32767
ii32 = np.iinfo(np.int32)
print(ii32.min) # -2147483648
print(ii32.max) # 2147483647
Machine limits for floating point types.
class finfo(object):
def _init(self, dtype):
【例】
import numpy as np
ff16 = np.finfo(np.float16)
print(ff16.bits) # 16
print(ff16.min) # -65500.0
print(ff16.max) # 65500.0
print(ff16.eps) # 0.000977
ff32 = np.finfo(np.float32)
print(ff32.bits) # 32
print(ff32.min) # -3.4028235e+38
print(ff32.max) # 3.4028235e+38
print(ff32.eps) # 1.1920929e-07