zoukankan      html  css  js  c++  java
  • poj 2387 最短路模板题

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90

    O(n^2)
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 #include <algorithm>
     5 #include <vector>
     6 #include <queue>
     7 #include <set>
     8 #include <map>
     9 #include <string>
    10 #include <cmath>
    11 #include <stdlib.h>
    12 #define MAXSIZE 1005
    13 using namespace std;
    14 
    15 int t,n;
    16 int m[MAXSIZE][MAXSIZE],dis[MAXSIZE],vis[MAXSIZE];
    17 
    18 void dij(int s)
    19 {
    20     int i,j,k;
    21     for(i = 0;i<n;i++)
    22     {
    23         dis[i] = m[s][i];
    24         vis[i] = 0;
    25     }
    26     dis[s] = 0;
    27     vis[s] = 1;
    28     for(i = 1;i<=n;i++)
    29     {
    30         k = 0;
    31         int mn = 1000000;
    32         for(j = 1;j<=n;j++)
    33             if(!vis[j]&&dis[j]<mn)
    34             {
    35                 mn = dis[j];
    36                 k = j;
    37             }
    38         vis[k] = 1;
    39         for(j = 1;j<=n;j++)
    40             if(!vis[j]&&dis[j]>dis[k]+m[k][j])
    41                 dis[j] = dis[k]+m[k][j];
    42     }
    43 }
    44 
    45 int main()
    46 {
    47     freopen("caicai.txt","r",stdin);
    48     cin>>t>>n;
    49     int i,j,a,b,w;
    50     for(i = 0;i<=n;i++)
    51         for(j = 0;j<=n;j++)
    52             m[i][j] = 1000;
    53     for(i = 0;i<t;i++)
    54     {
    55         scanf("%d%d%d",&a,&b,&w);
    56         if(m[a][b]>w)
    57         {
    58             m[a][b] = w;
    59             m[b][a] = w;
    60         }
    61     }
    62     dij(n);
    63     cout<<dis[1]<<endl;
    64     return 0;
    65 }
    View Code
  • 相关阅读:
    java垃圾回收机制
    mysql的find_in_set函数操作
    mysql中常见的sql语句语法书写操作
    如何破坏双亲委派原则
    mysql中临时表的创建
    spring当中的事务处理
    restTemplate调用操作出现乱码
    mysql中的any_value的基本使用操作
    DTD与XSD的区别
    idea的插件
  • 原文地址:https://www.cnblogs.com/caitian/p/5835806.html
Copyright © 2011-2022 走看看