zoukankan      html  css  js  c++  java
  • python图论包networks(最短路,最小生成树带包)

    官方文档:

    https://networkx.github.io/documentation/networkx-1.10/reference/algorithms.html

    最短路和最小生成树:

    import networkx as nx
    import matplotlib.pyplot as plt
    
    G = nx.Graph()
    #G.add_node(1)                  #添加一个节点1
    #G.add_edge(2,3,10)            #添加一条边2-3(隐含着添加了两个节点2、3)
    #G.add_edge(3,2)                #对于无向图,边3-2与边2-3被认为是一条边
    #G.add_weighted_edges_from([(1,2,8)])
    #G.add_weighted_edges_from([(1,3,10)])
    #G.add_weighted_edges_from([(2,3,6)])
    
    G.add_edge('A', 'B', weight=4)
    G.add_edge('B', 'D', weight=2)
    G.add_edge('A', 'C', weight=3)
    G.add_edge('C', 'D', weight=5)
    G.add_edge('A', 'D', weight=6)
    G.add_edge('C', 'F', weight=7)
    G.add_edge('A', 'G', weight=1)
    G.add_edge('H', 'B', weight=2)
    for u,v,d in G.edges(data=True):
        print(u,v,d['weight'])
    edge_labels=dict([((u,v,),d['weight']) for u,v,d in G.edges(data=True)])
    #fixed_position = {'A':[ 1.,  2.], 
    #                  'B': [ 1.,  0.], 
    #                  'D': [ 5., 5.], 
    #                  'C': [ 0.,6.]}#每个点在坐标轴中的位置
    #pos=nx.spring_layout(G,pos = fixed_position)#获取结点的位置,每次点的位置都是随机的
    pos = nx.spring_layout(G) #也可以不固定点
    nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels,font_size=14)#绘制图中边的权重
    
    print(edge_labels)
    print("nodes:", G.nodes())      #输出全部的节点: [1, 2, 3]
    print("edges:", G.edges())      #输出全部的边:[(2, 3)]
    print("number of edges:", G.number_of_edges())   #输出边的数量
    
    nx.draw_networkx(G,pos,node_size=400)
    plt.savefig("wuxiangtu.png")
    plt.show()
    
    
    # 生成邻接矩阵
    mat = nx.to_numpy_matrix(G)
    print(mat)
    
    
    # 计算两点间的最短路
    # dijkstra_path
    print('dijkstra方法寻找最短路径:')
    path=nx.dijkstra_path(G, source='H', target='F')
    print('节点H到F的路径:', path)
    print('dijkstra方法寻找最短距离:')
    distance=nx.dijkstra_path_length(G, source='H', target='F')
    print('节点H到F的距离为:', distance)
    
    # 一点到所有点的最短路
    p=nx.shortest_path(G,source='H') # target not specified
    d=nx.shortest_path_length(G,source='H')
    for node in G.nodes():
        print("H 到",node,"的最短路径为:",p[node])
        print("H 到",node,"的最短距离为:",d[node])
        
    # 所有点到一点的最短距离
    p=nx.shortest_path(G,target='H') # target not specified
    d=nx.shortest_path_length(G,target='H')
    for node in G.nodes():
        print(node,"到 H 的最短路径为:",p[node])
        print(node,"到 H 的最短距离为:",d[node])
        
    # 任意两点间的最短距离
    p=nx.shortest_path_length(G)
    p=dict(p)
    d=nx.shortest_path_length(G)
    d=dict(d)
    for node1 in G.nodes():
        for node2 in G.nodes():
            print(node1,"",node2,"的最短距离为:",d[node1][node2])
    
    # 最小生成树
    T=nx.minimum_spanning_tree(G) # 边有权重
    print(sorted(T.edges(data=True)))
    
    mst=nx.minimum_spanning_edges(G,data=False) # a generator of MST edges
    edgelist=list(mst) # make a list of the edges
    print(sorted(edgelist))
    
    # 使用A *算法的最短路径和路径长度
    p=nx.astar_path(G, source='H', target='F')
    print('节点H到F的路径:', path)
    d=nx.astar_path_length(G, source='H', target='F')
    print('节点H到F的距离为:', distance)
    
    # 找回路
    hl = nx.algorithms.find_cycle(G)
    print(hl)
    
    
    # 二分图匹配
    G = nx.complete_bipartite_graph(2, 3)
    nx.draw_networkx(G)
    left, right = nx.bipartite.sets(G)
    list(left) #[0, 1]
    list(right) #[2, 3, 4]
    p = nx.bipartite.maximum_matching(G)
    print("输出匹配:",p)
    
    
    # 最大流
    #  graph's maximum flow
    # flow is computed between vertex 0 and vertex n-1
    # expected input format:
    # n
    # m
    #g = nx.DiGraph()
    #n, m = int(input()), int(input())
    #for i in range(n):
    #    g.add_node(i)
    #for _ in range(m):
    #    a, b, c = [ int(i) for i in input().split(' ') ]
    #    g.add_edge(a, b, capacity=c)
    #max_flow = nx.algorithms.flow.maxflow.maximum_flow(g, 0, n-1)[0]
    #print(max_flow)
    g = nx.DiGraph()
    n, m = 4, 5
    for i in range(n):
        g.add_node(i)
    edge=["0 1 3","1 3 2","0 2 2","2 3 3","0 3 1"]
    for x in edge:
        a, b, c = [ int(i) for i in x.split(' ') ]
        g.add_edge(a, b, capacity=c)
    nx.draw(g)
    max_flow = nx.algorithms.flow.maxflow.maximum_flow(g, 0, n-1)[0]
    print(max_flow)
  • 相关阅读:
    [資料]VS2008技巧
    [資料]MarshalAs的用法
    MS SQL Server 2000安装不成功的原因
    Zend產品線
    [轉]Flex 开发必备10武器
    [轉]C#中的XML注释
    [轉]onpropertychange事件
    [轉]fckeditor添加自定义按钮
    [資源]Web設計資源以及线框工具
    [轉]JS中showModalDialog 详细使用
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/11384735.html
Copyright © 2011-2022 走看看