zoukankan      html  css  js  c++  java
  • Python动态展示遗传算法求解TSP旅行商问题()

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
    本文链接:https://blog.csdn.net/jiang425776024/article/details/84532018

    效果图:
    在这里插入图片描述
    程序会动态的展示迭代过程,40以内城市大概迭代300次能收敛到最优;这里是用中国城市地理坐标直接做欧式距离计算,实际上可以根据问题作出调整。
    Github:https://github.com/425776024/TSP-GA-py

    测试数据:china.csv:

    北京 ;116.46;39.92
    天津 ;117.2;39.13
    上海 ;121.48;31.22
    重庆 ;106.54;29.59
    拉萨 ;91.11;29.97
    乌鲁木齐 ;87.68;43.77
    银川 ;106.27;38.47
    呼和浩特 ;111.65;40.82
    南宁  ;108.33;22.84
    哈尔滨  ;126.63;45.75
    长春  ;125.35;43.88
    沈阳  ;123.38;41.8
    石家庄  ;114.48;38.03
    太原  ;112.53;37.87
    西宁  ;101.74;36.56
    济南  ;117;36.65
    郑州 ;113.6;34.76
    南京;118.78;32.04
    合肥;117.27;31.86
    杭州;120.19;30.26
    福州;119.3;26.08
    南昌;115.89;28.68
    长沙;113;28.21
    武汉;114.31;30.52
    广州;113.23;23.16
    台北;121.5;25.05
    海口;110.35;20.02
    兰州;103.73;36.03
    西安;108.95;34.27
    成都;104.06;30.67
    贵阳;106.71;26.57
    昆明;102.73;25.04
    香港;114.1;22.2
    澳门;113.33;22.13

    TSP-GA.py

    # -*- encoding: utf-8 -*-
    import numpy as np
    import pandas as pd
    from DW import *
    
    class TSP(object):
        citys = np.array([])    #城市数组
        citys_name = np.array([])
        pop_size = 50    #种群大小
        c_rate = 0.7    #交叉率
        m_rate = 0.05    #突变率
        pop = np.array([])    #种群数组
        fitness = np.array([])    #适应度数组
        city_size = -1        #标记城市数目
        ga_num = 200    #最大迭代次数
        best_dist = -1    #记录目前最优距离
        best_gen = []    #记录目前最优旅行方案
        dw = Draw()    #绘图类
    
        def __init__(self, c_rate, m_rate, pop_size, ga_num):
            self.fitness = np.zeros(self.pop_size)
            self.c_rate = c_rate
            self.m_rate = m_rate
            self.pop_size = pop_size
            self.ga_num = ga_num
    
        def init(self):
            tsp = self
            # tsp.load_Citys()    #加载城市数据
            tsp.load_Citys2()    #加载城市数据
            tsp.pop = tsp.creat_pop(tsp.pop_size)    #创建种群
            tsp.fitness = tsp.get_fitness(tsp.pop)    #计算初始种群适应度
            tsp.dw.bound_x = [np.min(tsp.citys[:, 0]), np.max(tsp.citys[:, 0])]    #计算绘图时的X界
            tsp.dw.bound_y = [np.min(tsp.citys[:, 1]), np.max(tsp.citys[:, 1])]    #计算绘图时的Y界
            tsp.dw.set_xybound(tsp.dw.bound_x, tsp.dw.bound_y)    #设置边界
    
        def creat_pop(self, size):
            pop = []
            for i in range(size):
                gene = np.arange(self.citys.shape[0])    #问题的解,基因,种群中的个体:[0,...,city_size]
                np.random.shuffle(gene)        #打乱数组[0,...,city_size]
                pop.append(gene)            #加入种群
            return np.array(pop)
    
        def get_fitness(self, pop):
            d = np.array([])                #适应度记录数组
            for i in range(pop.shape[0]):
                gen = pop[i]  # 取其中一条基因(编码解,个体)
                dis = self.gen_distance(gen)    #计算此基因优劣(距离长短)
                dis = self.best_dist / dis    #当前最优距离除以当前pop[i](个体)距离;越近适应度越高,最优适应度为1
                d = np.append(d, dis)  # 保存适应度pop[i]
            return d
    
        def get_local_fitness(self, gen, i):
            '''
            计算地i个城市的邻域
            交换基因数组中任意两个值组成的解集:称为邻域。计算领域内所有可能的适应度
            :param gen:城市路径
            :param i:第i城市
            :return:第i城市的局部适应度
            '''
            di = 0
            fi = 0
            if i == 0:
                di = self.ct_distance(self.citys[gen[0]], self.citys[gen[-1]])
            else:
                di = self.ct_distance(self.citys[gen[i]], self.citys[gen[i - 1]])
            od = []
            for j in range(self.city_size):
                if i != j:
                    od.append(self.ct_distance(self.citys[gen[i]], self.citys[gen[i - 1]]))
            mind = np.min(od)
            fi = di - mind
            return fi
    
        def EO(self, gen):
            #极值优化,传统遗传算法性能不好,这里混合EO
            #其会在整个基因的领域内,寻找一个最佳变换以更新基因
            local_fitness = []
            for g in range(self.city_size):
                f = self.get_local_fitness(gen, g)
                local_fitness.append(f)
            max_city_i = np.argmax(local_fitness)
            maxgen = np.copy(gen)
            if 1 < max_city_i < self.city_size - 1:
                for j in range(max_city_i):
                    maxgen = np.copy(gen)
                    jj = max_city_i
                    while jj < self.city_size:
                        gen1 = self.exechange_gen(maxgen, j, jj)
                        d = self.gen_distance(maxgen)
                        d1 = self.gen_distance(gen1)
                        if d > d1:
                            maxgen = gen1[:]
                        jj += 1
            gen = maxgen
            return gen
    
        def select_pop(self, pop):
            #选择种群,优胜劣汰,策略1:低于平均的要替换改变
            best_f_index = np.argmax(self.fitness)
            av = np.median(self.fitness, axis=0)
            for i in range(self.pop_size):
                if i != best_f_index and self.fitness[i] < av:
                    pi = self.cross(pop[best_f_index], pop[i])
                    pi = self.mutate(pi)
                    # d1 = self.distance(pi)
                    # d2 = self.distance(pop[i])
                    # if d1 < d2:
                    pop[i, :] = pi[:]
    
            return pop
    
        def select_pop2(self, pop):
            #选择种群,优胜劣汰,策略2:轮盘赌,适应度低的替换的概率大
            probility = self.fitness / self.fitness.sum()
            idx = np.random.choice(np.arange(self.pop_size), size=self.pop_size, replace=True, p=probility)
            n_pop = pop[idx, :]
            return n_pop
    
        def cross(self, parent1, parent2):
            """交叉p1,p2的部分基因片段"""
            if np.random.rand() > self.c_rate:
                return parent1
            index1 = np.random.randint(0, self.city_size - 1)
            index2 = np.random.randint(index1, self.city_size - 1)
            tempGene = parent2[index1:index2]  # 交叉的基因片段
            newGene = []
            p1len = 0
            for g in parent1:
                if p1len == index1:
                    newGene.extend(tempGene)  # 插入基因片段
                if g not in tempGene:
                    newGene.append(g)
                p1len += 1
            newGene = np.array(newGene)
    
            if newGene.shape[0] != self.city_size:
                print('c error')
                return self.creat_pop(1)
                # return parent1
            return newGene
    
        def mutate(self, gene):
            """突变"""
            if np.random.rand() > self.m_rate:
                return gene
            index1 = np.random.randint(0, self.city_size - 1)
            index2 = np.random.randint(index1, self.city_size - 1)
            newGene = self.reverse_gen(gene, index1, index2)
            if newGene.shape[0] != self.city_size:
                print('m error')
                return self.creat_pop(1)
            return newGene
    
        def reverse_gen(self, gen, i, j):
            #函数:翻转基因中i到j之间的基因片段
            if i >= j:
                return gen
            if j > self.city_size - 1:
                return gen
            parent1 = np.copy(gen)
            tempGene = parent1[i:j]
            newGene = []
            p1len = 0
            for g in parent1:
                if p1len == i:
                    newGene.extend(tempGene[::-1])  # 插入基因片段
                if g not in tempGene:
                    newGene.append(g)
                p1len += 1
            return np.array(newGene)
    
        def exechange_gen(self, gen, i, j):
            #函数:交换基因中i,j值
            c = gen[j]
            gen[j] = gen[i]
            gen[i] = c
            return gen
    
        def evolution(self):
            #主程序:迭代进化种群
            tsp = self
            for i in range(self.ga_num):
                best_f_index = np.argmax(tsp.fitness)
                worst_f_index = np.argmin(tsp.fitness)
                local_best_gen = tsp.pop[best_f_index]
                local_best_dist = tsp.gen_distance(local_best_gen)
                if i == 0:
                    tsp.best_gen = local_best_gen
                    tsp.best_dist = tsp.gen_distance(local_best_gen)
    
                if local_best_dist < tsp.best_dist:
                    tsp.best_dist = local_best_dist    #记录最优值
                    tsp.best_gen = local_best_gen    #记录最个体基因
                    #绘图
                    tsp.dw.ax.cla()
                    tsp.re_draw()
                    tsp.dw.plt.pause(0.001)
                else:
                    tsp.pop[worst_f_index] = self.best_gen
                print('gen:%d evo,best dist :%s' % (i, self.best_dist))
        
                tsp.pop = tsp.select_pop(tsp.pop)    #选择淘汰种群
                tsp.fitness = tsp.get_fitness(tsp.pop)    #计算种群适应度
                for j in range(self.pop_size):
                    r = np.random.randint(0, self.pop_size - 1)
                    if j != r:
                        tsp.pop[j] = tsp.cross(tsp.pop[j], tsp.pop[r])    #交叉种群中第j,r个体的基因
                        tsp.pop[j] = tsp.mutate(tsp.pop[j])    #突变种群中第j个体的基因
                self.best_gen = self.EO(self.best_gen)    #极值优化,防止收敛局部最优
                tsp.best_dist = tsp.gen_distance(self.best_gen)    #记录最优值
    
        def load_Citys(self, file='china_main_citys.csv', delm=','):
            # 中国34城市经纬度
            data = pd.read_csv(file, delimiter=delm, header=None).values
            #china_main_citys.csv数据太大,只计算部分如:湖南省关键字的
            self.citys = data[data[:, 0] == '湖南省', 4:]
            self.citys_name = data[data[:, 0] == '湖南省', 2]
            self.city_size = self.citys.shape[0]
    
        def load_Citys2(self, file='china.csv', delm=';'):
            # 中国34城市经纬度
            data = pd.read_csv(file, delimiter=delm, header=None).values
            self.citys = data[:, 1:]
            self.citys_name = data[:, 0]
            self.city_size = data.shape[0]
    
        def gen_distance(self, gen):
            #计算基因所代表的总旅行距离
            distance = 0.0
            for i in range(-1, len(self.citys) - 1):
                index1, index2 = gen[i], gen[i + 1]
                city1, city2 = self.citys[index1], self.citys[index2]
                distance += np.sqrt((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2)
            return distance
    
        def ct_distance(self, city1, city2):
            #计算2城市之间的欧氏距离
            d = np.sqrt((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2)
            return d
    
        def draw_citys_way(self, gen):
            '''
            根据一条基因gen绘制一条旅行路线
            :param gen:
            :return:
            '''
            tsp = self
            dw = self.dw
            m = gen.shape[0]
            tsp.dw.set_xybound(tsp.dw.bound_x, tsp.dw.bound_y)
            for i in range(m):
                if i < m - 1:
                    best_i = tsp.best_gen[i]
                    next_best_i = tsp.best_gen[i + 1]
                    best_icity = tsp.citys[best_i]
                    next_best_icity = tsp.citys[next_best_i]
                    dw.draw_line(best_icity, next_best_icity)
            start = tsp.citys[tsp.best_gen[0]]
            end = tsp.citys[tsp.best_gen[-1]]
            dw.draw_line(end, start)
    
        def draw_citys_name(self, gen, size=5):
            '''
            根据一条基因gen绘制对应城市名称
            :param gen:
            :param size: text size
            :return:
            '''
            tsp = self
            m = gen.shape[0]
            tsp.dw.set_xybound(tsp.dw.bound_x, tsp.dw.bound_y)
            for i in range(m):
                c = gen[i]
                best_icity = tsp.citys[c]
                tsp.dw.draw_text(best_icity[0], best_icity[1], tsp.citys_name[c], 10)
    
        def re_draw(self):
            #重绘图;每次迭代后绘制一次,动态展示。
            tsp = self
            tsp.dw.draw_points(tsp.citys[:, 0], tsp.citys[:, 1])
            tsp.draw_citys_name(tsp.pop[0], 8)
            tsp.draw_citys_way(self.best_gen)
            
    def main():
        tsp = TSP(0.5, 0.1, 100, 500)
        tsp.init()
        tsp.evolution()
        tsp.re_draw()
        tsp.dw.plt.show()
    
    if __name__ == '__main__':
        main()

    DW.py

    #DW.py
    
    import matplotlib.pyplot as plt
    from matplotlib.lines import Line2D
    import matplotlib.animation as animation
    
    class Draw(object):
        bound_x = []
        bound_y = []
    
        def __init__(self):
            self.fig, self.ax = plt.subplots()
            self.plt = plt
            self.set_font()
    
        def draw_line(self, p_from, p_to):
            line1 = [(p_from[0], p_from[1]), (p_to[0], p_to[1])]
            (line1_xs, line1_ys) = zip(*line1)
            self.ax.add_line(Line2D(line1_xs, line1_ys, linewidth=1, color='blue'))
    
        # def draw_arrow(self, p_from, p_to):
        #     if p_from.shape[0] != 2 and p_to.shape[0] != 2:
        #         print('error,', p_from, p_to)
        #         return
        #     p_from = list(p_from)
        #     p_to = list(p_to)
        #     self.ax.arrow(p_from[0], p_from[1], p_to[0] - p_from[0], p_to[1] - p_from[1],
        #                   length_includes_head=True,
        #                   head_width=(self.bound_x[1] - self.bound_x[0]) / 100,
        #                   head_length=(self.bound_x[1] - self.bound_x[0]) / 50,
        #                   fc='blue', ec='black')
    
        def draw_points(self, pointx, pointy):
            self.ax.plot(pointx, pointy, 'ro')
    
        def set_xybound(self, x_bd, y_bd):
            self.ax.axis([x_bd[0], x_bd[1], y_bd[0], y_bd[1]])
    
        def draw_text(self, x, y, text, size=8):
            self.ax.text(x, y, text, fontsize=size)
    
        def set_font(self, ft_style='SimHei'):
            plt.rcParams['font.sans-serif'] = [ft_style]  # 用来正常显示中文标签

     

  • 相关阅读:
    Java操作zip压缩和解压缩文件工具类
    Java操作图片的工具类
    使用Jacob操作Wrod文档的工具类代码
    Java计算文件的SHA码和MD5码
    Java 文件名操作的相关工具类
    Java中windows路径转换成linux路径等工具类
    JDBC的批量批量插入
    显示创建一个表的SQL语句
    MySQL中的保留字
    插入到Mysql数据库中的汉字乱码
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/13270670.html
Copyright © 2011-2022 走看看