zoukankan      html  css  js  c++  java
  • CodeForces

    XOR-pyramid
    time limit per test
    2 seconds
    memory limit per test
    512 megabytes
    input
    standard input
    output
    standard output

    For an array bb of length mm we define the function ff as

    f(b)={b[1]if m=1f(b[1]b[2],b[2]b[3],,b[m1]b[m])otherwise,f(b)={b[1]if m=1f(b[1]⊕b[2],b[2]⊕b[3],…,b[m−1]⊕b[m])otherwise,

    where ⊕ is bitwise exclusive OR.

    For example, f(1,2,4,8)=f(12,24,48)=f(3,6,12)=f(36,612)=f(5,10)=f(510)=f(15)=15f(1,2,4,8)=f(1⊕2,2⊕4,4⊕8)=f(3,6,12)=f(3⊕6,6⊕12)=f(5,10)=f(5⊕10)=f(15)=15

    You are given an array aa and a few queries. Each query is represented as two integers ll and rr. The answer is the maximum value of ff on all continuous subsegments of the array al,al+1,,aral,al+1,…,ar.

    Input

    The first line contains a single integer nn (1n50001≤n≤5000) — the length of aa.

    The second line contains nn integers a1,a2,,ana1,a2,…,an (0ai23010≤ai≤230−1) — the elements of the array.

    The third line contains a single integer qq (1q1000001≤q≤100000) — the number of queries.

    Each of the next qq lines contains a query represented as two integers ll, rr (1lrn1≤l≤r≤n).

    Output

    Print qq lines — the answers for the queries.

    Examples
    input
    Copy
    3
    8 4 1
    2
    2 3
    1 2
    output
    Copy
    5
    12
    input
    Copy
    6
    1 2 4 8 16 32
    4
    1 6
    2 5
    3 4
    1 2
    output
    Copy
    60
    30
    12
    3
    Note

    In first sample in both queries the maximum value of the function is reached on the subsegment that is equal to the whole segment.

    In second sample, optimal segment for first query are [3,6][3,6], for second query — [2,5][2,5], for third — [3,4][3,4], for fourth — [1,2][1,2].

    给n个数,询问q次,每次询问给出l,r.   [l,r]区间求异或最大值为多少。一开始没看清是最大值,还以为题目错了。

    区间【1,6】和区间【2,5】比较一下就知道很多会重复,所以把它们记下来节省时间。

    此题需要记忆化两次。区间动态规划。

    我用b数组来存储所以异或的值,dp数来存储最大值。

    拿第二个样例:

    b数组这样得来:

    b[1]这一排还是a数组

    b[i][j]=b[i-1][j]^b[i-1][j+1];

    dp数组这样的来:

    dp[0]这一排还是a数组

    dp[i][j]=max( dp[i-1][j], dp[i-1][j+1],b[i][j] );

      这是dp数组

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<map>
    #include<set>
    #define maxn 110
    #define maxm 10010
    #define inf 0x3f3f3f
    using namespace std;
    int b[5005][5005];
    int dp[5005][5005];
    int a[5005];
    int main()
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            dp[0][i]=a[i];
        }
        for(int i=1;i<=n-1;i++)
        {
            b[1][i]=a[i]^a[i+1];
            dp[1][i]=max(a[i],a[i+1]);//第一排也是要比较得到dp[1][i],否则第三个样例wa
            dp[1][i]=max(b[1][i],dp[1][i]);
        }
        for(int i=2;i<=n-1;i++)
        {
            for(int j=1;j<=n-i;j++)
            {
                b[i][j]=b[i-1][j]^b[i-1][j+1];
            }
        }
        for(int i=2;i<=n-1;i++)
        {
            for(int j=1;j<=n-i;j++)
            {
                dp[i][j]=max(dp[i-1][j],dp[i-1][j+1]);
                dp[i][j]=max(dp[i][j],b[i][j]);
            }
        }
        for(int i=0;i<=n-1;i++)
        {
            for(int j=1;j<=n-i;j++)
            {
                printf("%4d",dp[i][j]);
            }
            cout<<endl;
        }
        int q;
        scanf("%d",&q);
        while(q--)
        {
            int l,r;
            scanf("%d%d",&l,&r);
            printf("%d
    ",dp[r-l][l]);
        }
        return 0;
    }
  • 相关阅读:
    CSDN的博客是肿么了?
    SQL Server 2005: 存储过程签名
    SQLSERVER中数据行所占用的最小空间
    如何配置 SQL Server 2005 以允许远程连接
    XamlPad小程序
    OPEN SYMMETRIC KEY scope in SQL Server
    SQL Server 2005 helpful catalogs: crypt_properties and key_encryptions
    WPF Unleashed Chapter 3:Important New Concepts in WPF Routed Events
    xp_cmdshell
    SQL Server 2005: 如何让用户只能加密数据却不能解密数据
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/13270912.html
Copyright © 2011-2022 走看看