import xlrd
import jieba
import sys
import importlib
import os #python内置的包,用于进行文件目录操作,我们将会用到os.listdir函数
import pickle #导入cPickle包并且取一个别名pickle #持久化类
import random
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pylab import mpl
from sklearn.naive_bayes import MultinomialNB # 导入多项式贝叶斯算法包
from sklearn import svm
from sklearn import metrics
from sklearn.datasets.base import Bunch
from sklearn.feature_extraction.text import TfidfVectorizer
importlib.reload(sys)
#把内容和类别转化成一个向量的形式
trainContentdatasave=[] #存储所有训练和测试数据的分词
testContentdatasave=[]
trainContentdata = []
testContentdata = []
trainlabeldata = []
testlabeldata = []
#导入文本描述的训练和测试数据
def importTrainContentdata():
file = '20180716_train.xls'
wb = xlrd.open_workbook(file)
ws = wb.sheet_by_name("Sheet1")
for r in range(ws.nrows):
col = []
for c in range(1):
col.append(ws.cell(r, c).value)
trainContentdata.append(col)
def importTestContentdata():
file = '20180716_test.xls'
wb = xlrd.open_workbook(file)
ws = wb.sheet_by_name("Sheet1")
for r in range(ws.nrows):
col = []
for c in range(1):
col.append(ws.cell(r, c).value)
testContentdata.append(col)
#导入类别的训练和测试数据
def importTrainlabeldata():
file = '20180716_train_label.xls'
wb = xlrd.open_workbook(file)
ws = wb.sheet_by_name("Sheet1")
for r in range(ws.nrows):
col = []
for c in range(1):
col.append(ws.cell(r, c).value)
trainlabeldata.append(col)
def importTestlabeldata():
file = '20180716_test_label.xls'
wb = xlrd.open_workbook(file)
ws = wb.sheet_by_name("Sheet1")
for r in range(ws.nrows):
col = []
for c in range(1):
col.append(ws.cell(r, c).value)
testlabeldata.append(col)
"""
def importClassSet():
file = 'ClassSet.xls'
wb = xlrd.open_workbook(file)
ws = wb.sheet_by_name("Sheet1")
for r in range(ws.nrows):
col = []
for c in range(ws.ncols):
col.append(ws.cell(r, c).value)
ClassSet.append(col)
"""
def buildtrainbunch(bunch_path):
bunch = Bunch(label=[],contents=[])
for item1 in trainlabeldata:
bunch.label.append(item1)
for item2 in trainContentdata:
item2=str(item2)
item2 = item2.replace("
", "")
item2 = item2.replace(" ", "")
content_seg=jieba.cut(item2)
save2=''
for item3 in content_seg:
if len(item3) > 1 and item3!='
':
trainContentdatasave.append(item3)
save2=save2+","+item3
bunch.contents.append(save2)
with open(bunch_path, "wb") as file_obj:
pickle.dump(bunch, file_obj)
print("构建训练数据文本对象结束!!!")
def buildtestbunch(bunch_path):
bunch = Bunch(label=[],contents=[])
for item1 in testlabeldata:
bunch.label.append(item1)
for item2 in testContentdata:
item2=str(item2)
item2 = item2.replace("
", "")
item2 = item2.replace(" ", "")
content_seg=jieba.cut(item2)
save2=''
for item3 in content_seg:
if len(item3) > 1 and item3!='
':
testContentdatasave.append(item3)
save2=save2+","+item3
bunch.contents.append(save2)
with open(bunch_path, "wb") as file_obj:
pickle.dump(bunch, file_obj)
print("构建测试数据文本对象结束!!!")
#读取停用词
def _readfile(path):
with open(path, "rb") as fp:
content = fp.read()
return content
# 读取bunch对象
def _readbunchobj(path):
with open(path, "rb") as file_obj:
bunch = pickle.load(file_obj)
return bunch
# 写入bunch对象
def _writebunchobj(path, bunchobj):
with open(path, "wb") as file_obj:
pickle.dump(bunchobj, file_obj)
def vector_space(stopword_path,bunch_path,space_path):
stpwrdlst = _readfile(stopword_path).splitlines()#读取停用词
bunch = _readbunchobj(bunch_path)#导入分词后的词向量bunch对象
#构建tf-idf词向量空间对象
tfidfspace = Bunch(label=bunch.label,tdm=[], vocabulary={})
'''
权重矩阵tdm,其中,权重矩阵是一个二维矩阵,tdm[i][j]表示,第j个词(即词典中的序号)在第i个类别中的IF-IDF值
'''
#使用TfidVectorizer初始化向量空间模型
vectorizer = TfidfVectorizer(stop_words=stpwrdlst, sublinear_tf=True, max_df=0.5, min_df=0.0001,use_idf=False,max_features=10000)
#print(vectorizer)
#文本转为词频矩阵,单独保存字典文件
tfidfspace.tdm = vectorizer.fit_transform(bunch.contents)
tfidfspace.vocabulary = vectorizer.vocabulary_
#创建词袋的持久化
_writebunchobj(space_path, tfidfspace)
print("if-idf词向量空间实例创建成功!!!")
def testvector_space(stopword_path,bunch_path,space_path,train_tfidf_path):
stpwrdlst = _readfile(stopword_path).splitlines()#把停用词变成列表
bunch = _readbunchobj(bunch_path)
tfidfspace = Bunch(label=bunch.label,tdm=[], vocabulary={})
'''
tdm存放的是计算后得到的TF-IDF权重矩阵.
vocabulary是词向量空间的索引,例如,如果我们定义的词向量空间是(我,喜欢,相国大人),那么vocabulary就是这样一个索引字典
vocabulary={"我":0,"喜欢":1,"相国大人":2},你可以简单的理解为:vocabulary就是词向量空间的坐标轴,索引值相当于表明了第几个维度。
'''
#导入训练集的TF-IDF词向量空间 ★★
trainbunch = _readbunchobj(train_tfidf_path)
tfidfspace.vocabulary = trainbunch.vocabulary
'''
关于参数,你只需要了解这么几个就可以了:
stop_words:
传入停用词,以后我们获得vocabulary_的时候,就会根据文本信息去掉停用词得到
vocabulary:
之前说过,不再解释。
sublinear_tf:
计算tf值采用亚线性策略。比如,我们以前算tf是词频,现在用1+log(tf)来充当词频。
smooth_idf:
计算idf的时候log(分子/分母)分母有可能是0,smooth_idf会采用log(分子/(1+分母))的方式解决。默认已经开启,无需关心。
norm:
归一化,我们计算TF-IDF的时候,是用TF*IDF,TF可以是归一化的,也可以是没有归一化的,一般都是采用归一化的方法,默认开启.
max_df:
有些词,他们的文档频率太高了(一个词如果每篇文档都出现,那还有必要用它来区分文本类别吗?当然不用了呀),所以,我们可以
设定一个阈值,比如float类型0.5(取值范围[0.0,1.0]),表示这个词如果在整个数据集中超过50%的文本都出现了,那么我们也把它列
为临时停用词。当然你也可以设定为int型,例如max_df=10,表示这个词如果在整个数据集中超过10的文本都出现了,那么我们也把它列
为临时停用词。
min_df:
与max_df相反,虽然文档频率越低,似乎越能区分文本,可是如果太低,例如10000篇文本中只有1篇文本出现过这个词,仅仅因为这1篇
文本,就增加了词向量空间的维度,太不划算。
当然,max_df和min_df在给定vocabulary参数时,就失效了。
'''
vectorizer = TfidfVectorizer(stop_words=stpwrdlst, sublinear_tf=True, max_df=0.7, vocabulary=trainbunch.vocabulary, min_df=0.001)
#print(vectorizer)
tfidfspace.tdm = vectorizer.fit_transform(bunch.contents)
_writebunchobj(space_path, tfidfspace)
print("if-idf词向量空间实例创建成功!!!")
def metrics_result(actual, predict): # metrics.f1_score(y_test, y_pred, average='weighted', labels=np.unique(y_pred))
print('精度:{0:.3f}'.format(metrics.precision_score(actual, predict,average='weighted', labels=np.unique(predict))))
print('召回:{0:0.3f}'.format(metrics.recall_score(actual, predict,average='weighted', labels=np.unique(predict))))
print('f1-score:{0:.3f}'.format(metrics.f1_score(actual, predict, average='weighted', labels=np.unique(predict))))
#准确率和召回率是相互影响的,理想情况下是二者都高,但是一般情况下准确率高,召回率就低;召回率高,准确率就低
if __name__=="__main__":
importTrainContentdata()
importTestContentdata()
importTrainlabeldata()
importTestlabeldata()
#导入分词后的词向量bunch对象
train_bunch_path ="F:/goverment/ArticleMining/trainbunch.bat"#Bunch保存路径
test_bunch_path ="F:/goverment/ArticleMining/testbunch.bat"
stopword_path ="F:/goverment/ArticleMining/hlt_stop_words.txt"
train_space_path = "F:/goverment/ArticleMining/traintfdifspace.dat"
test_space_path = "F:/goverment/ArticleMining/testtfdifspace.dat"
#对训练和测试集进行bunch操作
buildtrainbunch(train_bunch_path)
buildtestbunch(test_bunch_path)
vector_space(stopword_path,train_bunch_path,train_space_path)
testvector_space(stopword_path,test_bunch_path,test_space_path,train_space_path)
#导入训练和测试数据集
train_set=_readbunchobj(train_space_path)
test_set=_readbunchobj(test_space_path)
print(train_set.tdm)
'''
mm=0
ii=0
jj=0
for i in range(3142):
for j in range(3142):
if train_set.tdm[i][j] >mm:
mm=train_set.tdm[i][j]
ii=i
jj=j
print(ii)
print(jj)
'''
#test_set.tdm
#train_set.label
# 训练分类器:输入词袋向量和分类标签,alpha:0.001 alpha越小,迭代次数越多,精度越高
#低召回、F1: 0.75 rbf:0.59 0.8 rbf 0.578
#c0.75 poly 66.5 精度:0.665 gamma=10 召回:0.330 f1-score:0.416
#C=0.7, kernel='poly', gamma=10 召回:0.331 f1-score:0.417
# alpha:0.001 alpha 越小,迭代次数越多,精度越高
'''
clf = MultinomialNB(alpha=0.052).fit(train_set.tdm, train_set.label)
#clf = svm.SVC(C=0.7, kernel='poly', gamma=10, decision_function_shape='ovr')
clf.fit(train_set.tdm, train_set.label)
predicted=clf.predict(test_set.tdm)
tv = TfidfVectorizer()
train_data = tv.fit_transform(X_train)
test_data = tv.transform(X_test)
lr = LogisticRegression(C=3)
lr.fit(train_set.tdm, train_set.label)
predicted=lr.predict(test_set.tdm)
print(lr.score(test_set.tdm, test_set.label))
#print(test_set.tdm)
'''
clf = SVC(C=1500)
clf.fit(train_set.tdm, train_set.label)
predicted=clf.predict(test_set.tdm)
print(clf.score(test_set.tdm, test_set.label))
'''
from sklearn.neighbors import KNeighborsClassifier
knnclf = KNeighborsClassifier(n_neighbors=9)#default with k=5
knnclf.fit(train_set.tdm,train_set.label)
predicted = knnclf.predict(test_set.tdm)
'''
a=[]
b=[]
for i in range(len(predicted)):
b.append((int)(float(predicted[i])))
a.append(int(test_set.label[i][0]))
f=open('F:/goverment/ArticleMining/predict.txt', 'w')
for i in range(len(predicted)):
f.write(str(b[i]))
f.write('
')
f.write("写好了")
f.close()
#for i in range(len(predicted)):
#print(b[i])
metrics_result(a, b)